Xiao-gang Liu, Hong-jian Du, Bin Li, Ye-liang Zhao, Ai-di Zhao, Bing Wang. π-Electron-Assisted Relaxation of Spin Excited States in Cobalt Phthalocyanine Molecules on Au(111) Surface[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 161-165. doi: 10.1063/1674-0068/30/cjcp1609178
Citation: Xiao-gang Liu, Hong-jian Du, Bin Li, Ye-liang Zhao, Ai-di Zhao, Bing Wang. π-Electron-Assisted Relaxation of Spin Excited States in Cobalt Phthalocyanine Molecules on Au(111) Surface[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 161-165. doi: 10.1063/1674-0068/30/cjcp1609178

π-Electron-Assisted Relaxation of Spin Excited States in Cobalt Phthalocyanine Molecules on Au(111) Surface

doi: 10.1063/1674-0068/30/cjcp1609178
  • Received Date: 2016-09-09
  • Rev Recd Date: 2016-10-17
  • We present our investigation on the spin relaxation of cobalt phthalocyanine (CoPc) films on Au(111) (CoPc/Au(111)) surface using scanning tunneling microscopy and spectroscopy. The spin relaxation time derived from the linewidth of spin-flip inelastic electron tunneling spectroscopy is quantitatively analyzed according to the Korringa-like formula. We find that although this regime of the spin relaxation time calculation by just considering the exchange interaction between itinerant conduction electrons and localized d-shells (s-d exchange interaction) can successfully reproduce the experimental value of the adsorbed magnetic atom, it fails in our case of CoPc/Au(111). Instead, we can obtain the relaxation time that is in good agreement with the experimental result by considering the fact that the π electrons in CoPc molecules are spin polarized, where the spin polarized π electrons extended at the Pc macrocycle may also scatter the conduction electrons in addition to the localized d spins. Our analyses indicate that the scattering by the π electrons provides an efficient spin relaxation channel in addition to the s-d interaction and thus leads to much short relaxation time in such a kind of molecular system on a metal substrate.


  • loading
  • [1]
    L. Bogani and W. Wernsdorfer, Nat. Mater. 7, 179 (2008).
    A. R. Rocha, V. M. Garcia-Suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Nat. Mater. 4, 335 (2005).
    H. Song, M. A. Reed, and T. Lee, Adv. Mater. 23, 1583 (2011).
    S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011).
    A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, Phys. Rev. Lett. 98, 057201 (2007).
    M. Warner, S. Din, I. S. Tupitsyn, G. W. Morley, A. M. Stoneham, J. A. Gardener, Z. L. Wu, A. J. Fisher, S. Heutz, C. W. M. Kay, and G. Aeppli, Nature 503, 504 (2013).
    J. D. Rinehart, M. Fang, W. J. Evans, and J. R. Long, J. Am. Chem. Soc. 133, 14236 (2011).
    M. Ganzhorn, S. Klyatskaya, M. Ruben, and W.Wernsdorfer, Nat. Nanotechnol. 8, 165 (2013).
    J. M. Zadrozny, D. J. Xiao, M. Atanasov, G. J. Long, F. Grandjean, F. Neese, and J. R. Long, Nat. Chem. 5, 577 (2013).
    Y. Rechkemmer, F. D. Breitgoff, M. van der Meer, M. Atanasov, M. Hakl, M. Orlita, P. Neugebauer, F. Neese, B. Sarkar, and J. van Slageren, Nat. Commun. 7, 10467 (2016).
    N. Tsukahara, K. I. Noto, M. Ohara, S. Shiraki, N. Takagi, Y. Takata, J. Miyawaki, M. Taguchi, A. Chainani, S. Shin, and M. Kawai, Phys. Rev. Lett. 102, 167203 (2009).
    X. Chen, Y. S. Fu, S. H. Ji, T. Zhang, P. Cheng, X. C. Ma, X. L. Zou, W. H. Duan, J. F. Jia, and Q. K. Xue, Phys. Rev. Lett. 101, 197208 (2008).
    A. A. Khajetoorians, T. Schlenk, B. Schweflinghaus, M. D. Dias, M. Steinbrecher, M. Bouhassoune, S. Lounis, J. Wiebe, and R. Wiesendanger, Phys. Rev. Lett. 111, 157204 (2013).
    A. A. Khajetoorians, S. Lounis, B. Chilian, A. T. Costa, L. Zhou, D. L. Mills, J. Wiebe, and R. Wiesendanger, Phys. Rev. Lett. 106, 037205 (2011).
    S. Loth, K. von Bergmann, M. Ternes, A. F. Otte, C. P. Lutz, and A. J. Heinrich, Nat. Phys. 6, 340 (2010).
    S. Loth, M. Etzkorn, C. P. Lutz, D. M. Eigler, and A. J. Heinrich, Science 329, 1628 (2010).
    I. G. Rau, S. Baumann, S. Rusponi, F. Donati, S. Stepanow, L. Gragnaniello, J. Dreiser, C. Piamonteze, F. Nolting, S. Gangopadhyay, O. R. Albertini, R. M. Macfarlane, C. P. Lutz, B. A. Jones, P. Gambardella, and A. J. Heinrich, and H. Brune, Science 344, 988 (2014).
    H. Hasegawa, Prog. Theor. Phys. 21, 483 (1959).
    A. C. Gossard, A. J. Heeger, and J. H. Wernick, J. Appl. Phys. 38, 1251 (1967).
    M. Tyazhlov, V. D. Kulakovskii, A. I. Filin, D. R. Yakovlev, A. Waag, and G. Landwehr, Phys. Rev. B 59, 2050 (1999).
    E. Souto, O. A. C. Nunes, and A. L. A. Fonseca, Solid State Commun. 129, 605 (2004).
    A. A. Khajetoorians, B. Chilian, J. Wiebe, S. Schuwalow, F. Lechermann, and R. Wiesendanger, Nature 467, 1084 (2010).
    F. Delgado, C. F. Hirjibehedin, and J. Fernndez-Rossier, Surf. Sci. 630, 337 (2014).
    M. Ternes, New J. Phys. 17, 063016 (2015).
    P. Gambardella, S. Rusponi, M. Veronese, S. S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P. H. Dederichs, K. Kern, C. Carbone, and H. Brune, Science 300, 1130 (2003).
    A. A. Khajetoorians, B. Baxevanis, C. Hübner, T. Schlenk, S. Krause, T. Oliver Wehling, S. Lounis, A. Lichtenstein, D. Pfannkuche, J. Wiebe, and R. Wiesendanger, Science 339, 55 (2013).
    T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, Nature 503, 242 (2013).
    F. Donati, S. Rusponi, S. Stepanow, C. Wäckerlin, A. Singha, L. Persichetti, R. Baltic, K. Diller, F. Patthey, E. Fernandes, J. Dreiser, Ž. Šljivančanin, K. Kummer, C. Nistor, P. Gambardella, and H. Brune, Science 352, 318 (2016).
    M. Steinbrecher, A. Sonntag, M. dos S. Dias, M. Bouhassoune, S. Lounis, J. Wiebe, R. Wiesendanger, and A. A. Khajetoorians, Nat. Commun. 7, 10454 (2015).
    A. Mugarza, C. Krull, R. Robles, S. Stepanow, G. Ceballos, and P. Gambardella, Nat. Commun. 2, 490 (2011).
    E. Minamitani, Y. S. Fu, Q. K. Xue, Y. Kim, and S. Watanabe, Phys. Rev. B 92, 075144 (2015).
    U. G. E. Perera, H. J. Kulik, V. Iancu, L. G. G. V. Dias da Silva, S. E. Ulloa, N. Marzari, and S. W. Hla, Phys. Rev. Lett. 105, 106601 (2010).
    H. Murakawa, A. Kanda, M. Ikeda, M. Matsuda, and N. Hanasaki, Phys. Rev. B 92, 054429 (2015).
    J. Korringa, Physica 16, 601 (1950).
    A. D. Zhao, Q. X. Li, L. Chen, H. J. Xiang, W. H. Wang, S. Pan, B. Wang, X. D. Xiao, J. L. Yang, J. G. Hou, and Q. S. Zhu, Science 309, 1542 (2005).
    B. C. Stipe, M. A. Rezaei, and W. Ho, Science 280, 1732 (1998).
    H. J. Du, X. Sun, X. G. Liu, X. J. Wu, J. F. Wang, M. Y. Tian, A. D. Zhao, Y. Luo, J. L. Yang, B. Wang, and J. G. Hou, Nat. Commun. 7, 10814 (2016).
    F. Hamdani, J. P. Lascaray, D. Coquillat, A. K. Bhattacharjee, M. Nawrocki, and Z. Golacki, Phys. Rev. B 45, 13298 (1992).
    D. A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids, Plenum press: Springer, (1986).
    F. Reinert, G. Nicolay, S. Schmidt, D. Ehm, and S. Hufner, Phys. Rev. B 63, 115415 (2001).
    P. Enghag, Encyclopedia of the Elements: Techni-cal Data History Processing Applications, Weinheim: Wiley-VCH, (2004).
    K. Wandelt, Surface and Interface Science, Weinheim: Wiley-VCH (2012).
    A. Bendounan, K. Ait-Mansour, J. Braun, J. Minar, S. Bornemann, R. Fasel, O. Groning, F. Sirotti, and H. Ebert, Phys. Rev. B 83, 195427 (2011).
    D. L. Mills and P. Lederer, Phys. Rev. 160, 590 (1967).
    A. Schweiger and G. Jeschke, Principles of Pulse Elec-tron Paramagnetic Resonance, Oxford: Oxford University Press, (2001).
    P. Ballirano, R. Caminiti, C. Ercolani, A. Maras, and M. A. Orru, J. Am. Chem. Soc. 120, 12798 (1998).
    J. Eisert, M. Friesdorf, and C. Gogolin, Nat. Phys. 11, 124 (2015).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1233) PDF downloads(798) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint