Xiao-gang Liu, Hong-jian Du, Bin Li, Ye-liang Zhao, Ai-di Zhao, Bing Wang. π-Electron-Assisted Relaxation of Spin Excited States in Cobalt Phthalocyanine Molecules on Au(111) Surface[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 161-165. doi: 10.1063/1674-0068/30/cjcp1609178
Citation: Xiao-gang Liu, Hong-jian Du, Bin Li, Ye-liang Zhao, Ai-di Zhao, Bing Wang. π-Electron-Assisted Relaxation of Spin Excited States in Cobalt Phthalocyanine Molecules on Au(111) Surface[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 161-165. doi: 10.1063/1674-0068/30/cjcp1609178

π-Electron-Assisted Relaxation of Spin Excited States in Cobalt Phthalocyanine Molecules on Au(111) Surface

doi: 10.1063/1674-0068/30/cjcp1609178
  • Received Date: 2016-09-09
  • Rev Recd Date: 2016-10-17
  • We present our investigation on the spin relaxation of cobalt phthalocyanine (CoPc) films on Au(111) (CoPc/Au(111)) surface using scanning tunneling microscopy and spectroscopy. The spin relaxation time derived from the linewidth of spin-flip inelastic electron tunneling spectroscopy is quantitatively analyzed according to the Korringa-like formula. We find that although this regime of the spin relaxation time calculation by just considering the exchange interaction between itinerant conduction electrons and localized d-shells (s-d exchange interaction) can successfully reproduce the experimental value of the adsorbed magnetic atom, it fails in our case of CoPc/Au(111). Instead, we can obtain the relaxation time that is in good agreement with the experimental result by considering the fact that the π electrons in CoPc molecules are spin polarized, where the spin polarized π electrons extended at the Pc macrocycle may also scatter the conduction electrons in addition to the localized d spins. Our analyses indicate that the scattering by the π electrons provides an efficient spin relaxation channel in addition to the s-d interaction and thus leads to much short relaxation time in such a kind of molecular system on a metal substrate.
  • 加载中
  • [1] L. Bogani and W. Wernsdorfer, Nat. Mater. 7, 179 (2008).
    [2] A. R. Rocha, V. M. Garcia-Suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Nat. Mater. 4, 335 (2005).
    [3] H. Song, M. A. Reed, and T. Lee, Adv. Mater. 23, 1583 (2011).
    [4] S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011).
    [5] A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, Phys. Rev. Lett. 98, 057201 (2007).
    [6] M. Warner, S. Din, I. S. Tupitsyn, G. W. Morley, A. M. Stoneham, J. A. Gardener, Z. L. Wu, A. J. Fisher, S. Heutz, C. W. M. Kay, and G. Aeppli, Nature 503, 504 (2013).
    [7] J. D. Rinehart, M. Fang, W. J. Evans, and J. R. Long, J. Am. Chem. Soc. 133, 14236 (2011).
    [8] M. Ganzhorn, S. Klyatskaya, M. Ruben, and W.Wernsdorfer, Nat. Nanotechnol. 8, 165 (2013).
    [9] J. M. Zadrozny, D. J. Xiao, M. Atanasov, G. J. Long, F. Grandjean, F. Neese, and J. R. Long, Nat. Chem. 5, 577 (2013).
    [10] Y. Rechkemmer, F. D. Breitgoff, M. van der Meer, M. Atanasov, M. Hakl, M. Orlita, P. Neugebauer, F. Neese, B. Sarkar, and J. van Slageren, Nat. Commun. 7, 10467 (2016).
    [11] N. Tsukahara, K. I. Noto, M. Ohara, S. Shiraki, N. Takagi, Y. Takata, J. Miyawaki, M. Taguchi, A. Chainani, S. Shin, and M. Kawai, Phys. Rev. Lett. 102, 167203 (2009).
    [12] X. Chen, Y. S. Fu, S. H. Ji, T. Zhang, P. Cheng, X. C. Ma, X. L. Zou, W. H. Duan, J. F. Jia, and Q. K. Xue, Phys. Rev. Lett. 101, 197208 (2008).
    [13] A. A. Khajetoorians, T. Schlenk, B. Schweflinghaus, M. D. Dias, M. Steinbrecher, M. Bouhassoune, S. Lounis, J. Wiebe, and R. Wiesendanger, Phys. Rev. Lett. 111, 157204 (2013).
    [14] A. A. Khajetoorians, S. Lounis, B. Chilian, A. T. Costa, L. Zhou, D. L. Mills, J. Wiebe, and R. Wiesendanger, Phys. Rev. Lett. 106, 037205 (2011).
    [15] S. Loth, K. von Bergmann, M. Ternes, A. F. Otte, C. P. Lutz, and A. J. Heinrich, Nat. Phys. 6, 340 (2010).
    [16] S. Loth, M. Etzkorn, C. P. Lutz, D. M. Eigler, and A. J. Heinrich, Science 329, 1628 (2010).
    [17] I. G. Rau, S. Baumann, S. Rusponi, F. Donati, S. Stepanow, L. Gragnaniello, J. Dreiser, C. Piamonteze, F. Nolting, S. Gangopadhyay, O. R. Albertini, R. M. Macfarlane, C. P. Lutz, B. A. Jones, P. Gambardella, and A. J. Heinrich, and H. Brune, Science 344, 988 (2014).
    [18] H. Hasegawa, Prog. Theor. Phys. 21, 483 (1959).
    [19] A. C. Gossard, A. J. Heeger, and J. H. Wernick, J. Appl. Phys. 38, 1251 (1967).
    [20] M. Tyazhlov, V. D. Kulakovskii, A. I. Filin, D. R. Yakovlev, A. Waag, and G. Landwehr, Phys. Rev. B 59, 2050 (1999).
    [21] E. Souto, O. A. C. Nunes, and A. L. A. Fonseca, Solid State Commun. 129, 605 (2004).
    [22] A. A. Khajetoorians, B. Chilian, J. Wiebe, S. Schuwalow, F. Lechermann, and R. Wiesendanger, Nature 467, 1084 (2010).
    [23] F. Delgado, C. F. Hirjibehedin, and J. Fernndez-Rossier, Surf. Sci. 630, 337 (2014).
    [24] M. Ternes, New J. Phys. 17, 063016 (2015).
    [25] P. Gambardella, S. Rusponi, M. Veronese, S. S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P. H. Dederichs, K. Kern, C. Carbone, and H. Brune, Science 300, 1130 (2003).
    [26] A. A. Khajetoorians, B. Baxevanis, C. Hübner, T. Schlenk, S. Krause, T. Oliver Wehling, S. Lounis, A. Lichtenstein, D. Pfannkuche, J. Wiebe, and R. Wiesendanger, Science 339, 55 (2013).
    [27] T. Miyamachi, T. Schuh, T. Märkl, C. Bresch, T. Balashov, A. Stöhr, C. Karlewski, S. André, M. Marthaler, M. Hoffmann, M. Geilhufe, S. Ostanin, W. Hergert, I. Mertig, G. Schön, A. Ernst, and W. Wulfhekel, Nature 503, 242 (2013).
    [28] F. Donati, S. Rusponi, S. Stepanow, C. Wäckerlin, A. Singha, L. Persichetti, R. Baltic, K. Diller, F. Patthey, E. Fernandes, J. Dreiser, Ž. Šljivančanin, K. Kummer, C. Nistor, P. Gambardella, and H. Brune, Science 352, 318 (2016).
    [29] M. Steinbrecher, A. Sonntag, M. dos S. Dias, M. Bouhassoune, S. Lounis, J. Wiebe, R. Wiesendanger, and A. A. Khajetoorians, Nat. Commun. 7, 10454 (2015).
    [30] A. Mugarza, C. Krull, R. Robles, S. Stepanow, G. Ceballos, and P. Gambardella, Nat. Commun. 2, 490 (2011).
    [31] E. Minamitani, Y. S. Fu, Q. K. Xue, Y. Kim, and S. Watanabe, Phys. Rev. B 92, 075144 (2015).
    [32] U. G. E. Perera, H. J. Kulik, V. Iancu, L. G. G. V. Dias da Silva, S. E. Ulloa, N. Marzari, and S. W. Hla, Phys. Rev. Lett. 105, 106601 (2010).
    [33] H. Murakawa, A. Kanda, M. Ikeda, M. Matsuda, and N. Hanasaki, Phys. Rev. B 92, 054429 (2015).
    [34] J. Korringa, Physica 16, 601 (1950).
    [35] A. D. Zhao, Q. X. Li, L. Chen, H. J. Xiang, W. H. Wang, S. Pan, B. Wang, X. D. Xiao, J. L. Yang, J. G. Hou, and Q. S. Zhu, Science 309, 1542 (2005).
    [36] B. C. Stipe, M. A. Rezaei, and W. Ho, Science 280, 1732 (1998).
    [37] H. J. Du, X. Sun, X. G. Liu, X. J. Wu, J. F. Wang, M. Y. Tian, A. D. Zhao, Y. Luo, J. L. Yang, B. Wang, and J. G. Hou, Nat. Commun. 7, 10814 (2016).
    [38] F. Hamdani, J. P. Lascaray, D. Coquillat, A. K. Bhattacharjee, M. Nawrocki, and Z. Golacki, Phys. Rev. B 45, 13298 (1992).
    [39] D. A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids, Plenum press: Springer, (1986).
    [40] F. Reinert, G. Nicolay, S. Schmidt, D. Ehm, and S. Hufner, Phys. Rev. B 63, 115415 (2001).
    [41] P. Enghag, Encyclopedia of the Elements: Techni-cal Data History Processing Applications, Weinheim: Wiley-VCH, (2004).
    [42] K. Wandelt, Surface and Interface Science, Weinheim: Wiley-VCH (2012).
    [43] A. Bendounan, K. Ait-Mansour, J. Braun, J. Minar, S. Bornemann, R. Fasel, O. Groning, F. Sirotti, and H. Ebert, Phys. Rev. B 83, 195427 (2011).
    [44] D. L. Mills and P. Lederer, Phys. Rev. 160, 590 (1967).
    [45] A. Schweiger and G. Jeschke, Principles of Pulse Elec-tron Paramagnetic Resonance, Oxford: Oxford University Press, (2001).
    [46] P. Ballirano, R. Caminiti, C. Ercolani, A. Maras, and M. A. Orru, J. Am. Chem. Soc. 120, 12798 (1998).
    [47] J. Eisert, M. Friesdorf, and C. Gogolin, Nat. Phys. 11, 124 (2015).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1083) PDF downloads(798) Cited by()

Proportional views
Related

π-Electron-Assisted Relaxation of Spin Excited States in Cobalt Phthalocyanine Molecules on Au(111) Surface

doi: 10.1063/1674-0068/30/cjcp1609178

Abstract: We present our investigation on the spin relaxation of cobalt phthalocyanine (CoPc) films on Au(111) (CoPc/Au(111)) surface using scanning tunneling microscopy and spectroscopy. The spin relaxation time derived from the linewidth of spin-flip inelastic electron tunneling spectroscopy is quantitatively analyzed according to the Korringa-like formula. We find that although this regime of the spin relaxation time calculation by just considering the exchange interaction between itinerant conduction electrons and localized d-shells (s-d exchange interaction) can successfully reproduce the experimental value of the adsorbed magnetic atom, it fails in our case of CoPc/Au(111). Instead, we can obtain the relaxation time that is in good agreement with the experimental result by considering the fact that the π electrons in CoPc molecules are spin polarized, where the spin polarized π electrons extended at the Pc macrocycle may also scatter the conduction electrons in addition to the localized d spins. Our analyses indicate that the scattering by the π electrons provides an efficient spin relaxation channel in addition to the s-d interaction and thus leads to much short relaxation time in such a kind of molecular system on a metal substrate.

Xiao-gang Liu, Hong-jian Du, Bin Li, Ye-liang Zhao, Ai-di Zhao, Bing Wang. π-Electron-Assisted Relaxation of Spin Excited States in Cobalt Phthalocyanine Molecules on Au(111) Surface[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 161-165. doi: 10.1063/1674-0068/30/cjcp1609178
Citation: Xiao-gang Liu, Hong-jian Du, Bin Li, Ye-liang Zhao, Ai-di Zhao, Bing Wang. π-Electron-Assisted Relaxation of Spin Excited States in Cobalt Phthalocyanine Molecules on Au(111) Surface[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 161-165. doi: 10.1063/1674-0068/30/cjcp1609178
Reference (47)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return