Zhen-hua Geng, Xiao Chen, Qing Guo, Dong-xu Dai, Xue-ming Yang. Acetone Formation from Photolysis of 2-Propanol on Anatase-TiO2(101)[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 1-6. doi: 10.1063/1674-0068/30/cjcp1608170
Citation: Zhen-hua Geng, Xiao Chen, Qing Guo, Dong-xu Dai, Xue-ming Yang. Acetone Formation from Photolysis of 2-Propanol on Anatase-TiO2(101)[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 1-6. doi: 10.1063/1674-0068/30/cjcp1608170

Acetone Formation from Photolysis of 2-Propanol on Anatase-TiO2(101)

doi: 10.1063/1674-0068/30/cjcp1608170
  • Received Date: 2016-08-30
  • Rev Recd Date: 2016-10-06
  • Photocatalysis of 2-propanol on A-TiO2(101) has been investigated using a temperature programed desorption method with 266 nm laser light. A clear mechanism is proposed for photodissociation of 2-propanol on A-TiO2(101). Acetone product on five coordinate Ti4+ sites is formed in a stepwise manner in which the O-H dissociation proceeds first and then followed by secondary C-H dissociation of 2-propanol while H atoms are transferred to the adjacent bridge bond oxygen (BBO) sites. Low temperature water is formed in a thermally driven process via H-atom on BBO in exchange with isopropyl groups of molecule 2-propanol, while isopropyl radical desorbs at high temperature during the TPD process. The observation demonstrates the prospect of TiO2 as a photocatalyst for degradation of organics.
  • 加载中
  • [1] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 95, 69(1995).
    [2] A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol. C 1, 1(2000).
    [3] U. Diebold, Surf. Sci. Rep. 48, 53(2003).
    [4] T. L. Thompson and J. T. Yates, Chem. Rev. 106, 4428(2006).
    [5] M. H. Ma, Surf. Sci. Rep. 66, 185(2011).
    [6] T. Ohno, K. Sarukawa, and M. Matsumura, New J. Chem. 26, 1167(2002).
    [7] D. Brinkley and T. Engel, J. Phys. Chem. B 104, 9836(2000).
    [8] W. Xu and D. Raftery, J. Phys. Chem. B 105, 4343(2001).
    [9] Y. K. Kim, R. Rousseau, B. D. Kay, J. White, and Z. Dohnálek, J. Am. Chem. Soc. 130, 5059(2008).
    [10] D. Brinkley and T. Engel, J. Phys. Chem. B 102, 7596(1998).
    [11] D. Brinkley and T. Engel, Surf. Sci. 415, L1001(1998).
    [12] O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, J. Phys. Chem. B 108, 6004(2004).
    [13] Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, and M. Tachiya, J. Am. Chem. Soc. 128, 416(2006).
    [14] O. Bondarchuk, Y. K. Kim, J. White, J. Kim, B. D. Kay, and Z. Dohnálek, J. Phys. Chem. C 111, 11059(2007).
    [15] Y. K. Kim, B. D. Kay, J. White, and Z. Dohnálek, Catal. Lett. 119, 1(2007).
    [16] Y. K. Kim, B. D. Kay, J. White, and Z. Dohnálek, Surf. Sci. 602, 511(2008).
    [17] M. D. Kershis and M. G. White, Phys. Chem. Chem. Phys. 15, 17976(2013).
    [18] M. A. Henderson, J. Phys. Chem. B 109, 12062(2005).
    [19] R. T. Zehr and M. A. Henderson, Surf. Sci. 602, 2238(2008).
    [20] C. Xu, W. Yang, Q. Guo, D. Dai, M. Chen, and X. Yang, J. Am. Chem. Soc. 136, 602(2014).
    [21] Z. F. Ren, Q. Guo, C. B. Xu, W. S. Yang, C. L. Xiao, D. X. Dai, and X. M. Yang, Chin. J. Chem. Phys. 25, 507(2012).
    [22] P. L. Hagans, B. M. DeKoven, and J. L. Womack, J. Vac. Sci Technol. A 7, 3375(1989).
    [23] Z. Li, R. S. Smith, B. D. Kay, and Z. Dohnálek, J. Phys. Chem. C 115, 22534(2011).
    [24] G. S. Herman, Z. Dohnalek, N. Ruzycki, and U. Diebold, J. Phys. Chem. B 107, 2788(2003).
    [25] S. I. Cho, C. H. Chung, and S. H. Moon, J. Electrochem. Soc. 148, C599(2001).
    [26] M. Setvin, U. Aschauer, P. Scheiber, Y. F. Li, W. Y. Hou, M. Schmid, A. Selloni, and U. Diebold, Science 341, 988(2013).
    [27] M. Shen and M. A. Henderson, J. Phys. Chem. L 2, 2707(2011).
    [28] Q. Guo, C. Xu, Z. Ren, W. Yang, Z. Ma, D. Dai, H. Fan, T. K. Minton, and X. Yang, J. Am. Chem. Soc. 134, 13366(2012).
    [29] Y. He, O. Dulub, H. Cheng, A. Selloni, and U. Diebold, Phys. Rev. Lett. 102, 106105(2009).
    [30] M. M. Islam, M. Calatayud, and G. Pacchioni, J. Phys. Chem. C. 115, 6809(2011).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(973) PDF downloads(650) Cited by()

Proportional views
Related

Acetone Formation from Photolysis of 2-Propanol on Anatase-TiO2(101)

doi: 10.1063/1674-0068/30/cjcp1608170

Abstract: Photocatalysis of 2-propanol on A-TiO2(101) has been investigated using a temperature programed desorption method with 266 nm laser light. A clear mechanism is proposed for photodissociation of 2-propanol on A-TiO2(101). Acetone product on five coordinate Ti4+ sites is formed in a stepwise manner in which the O-H dissociation proceeds first and then followed by secondary C-H dissociation of 2-propanol while H atoms are transferred to the adjacent bridge bond oxygen (BBO) sites. Low temperature water is formed in a thermally driven process via H-atom on BBO in exchange with isopropyl groups of molecule 2-propanol, while isopropyl radical desorbs at high temperature during the TPD process. The observation demonstrates the prospect of TiO2 as a photocatalyst for degradation of organics.

Zhen-hua Geng, Xiao Chen, Qing Guo, Dong-xu Dai, Xue-ming Yang. Acetone Formation from Photolysis of 2-Propanol on Anatase-TiO2(101)[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 1-6. doi: 10.1063/1674-0068/30/cjcp1608170
Citation: Zhen-hua Geng, Xiao Chen, Qing Guo, Dong-xu Dai, Xue-ming Yang. Acetone Formation from Photolysis of 2-Propanol on Anatase-TiO2(101)[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 1-6. doi: 10.1063/1674-0068/30/cjcp1608170
Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return