Dan Nie, Jiang Zhang, Wen-ji Deng, Xi Chen, Zhong-quan Mao, Ling-yun Tang. Narrow Band Gap and Roomtemperature Ferromagnetism in KNb1-xFexO3-δ[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 97-102. doi: 10.1063/1674-0068/30/cjcp1608154
Citation: Dan Nie, Jiang Zhang, Wen-ji Deng, Xi Chen, Zhong-quan Mao, Ling-yun Tang. Narrow Band Gap and Roomtemperature Ferromagnetism in KNb1-xFexO3-δ[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 97-102. doi: 10.1063/1674-0068/30/cjcp1608154

Narrow Band Gap and Roomtemperature Ferromagnetism in KNb1-xFexO3-δ

doi: 10.1063/1674-0068/30/cjcp1608154
  • Received Date: 2016-08-05
  • Rev Recd Date: 2016-10-07
  • We have investigated the structure, optical and magnetic properties of ferroelectric KNb1-xFexO3-δ (X=0, 0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25) synthesized by a traditional solid-state reaction method. According to the X-ray diffraction and the results of Rietveld refinement, all the samples maintain orthorhombic distorted perovskite structures with Amm2 space group without any secondary phase, suggesting the well incorporation of Fe ions into the KNbO3 matrix. With the increase of Fe concentration, the band gap of each sample is decreased gradually, which is much smaller than the 3.18 eV band gap of pure KNbO3. Through X-ray photoelectron spectrum analysis, the increased density of oxygen vacancy and Fe ions may be responsible for the observed decrease in band gap. Compared with the pure KNbO3, Fe doped samples exhibit room-temperature weak ferromagnetism. The ferromagnetism in KNb1-xFexO3-δ with low-concentration dopants (x=0.01-0.10) can be attributed to the bound magnetic polaron mediated exchange. The enhancement of magnetism for the high-concentration (x=0.10-0.20) doped samples may arise from the further increase of magnetic Fe ions.
  • 加载中
  • [1] T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, and S. W. Cheong, Science 324, 63(2009).
    [2] S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager, L. W. Martin, and R. Ramesh, Nature Nanotech. 5, 143(2010).
    [3] D. Cao, C. Wang, F. Zheng, W. Dong, L. Fang, and M. Shen, Nano lett. 12, 2803(2012).
    [4] M. Alexe and D. Hesse, Nat. Commun. 2, 256(2011).
    [5] W. S. Choi, M. F. Chisholm, D. J. Singh, T. Choi, and J. G. Jr., Nat. Commun. 3, 689(2012).
    [6] F. Wang, C. Di Valentin, and G. Pacchioni, J. Phys. Chem. C 116, 8901(2012).
    [7] I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, Nature 503, 509(2013).
    [8] D. Kan, V. Anbusathaiah, and I. Takeuchi, Adv. Mater. 23, 1765(2011).
    [9] J. W. Bennett, I. Grinberg, and A. M. Rappe, J. Am. Chem. Soc. 130, 17409(2008).
    [10] Z. Zhang, P. Wu, L. Chen, and J. Wang, Appl. Phys. Lett. 96, 12905(2010).
    [11] C. H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, and J. Seidel, Phys. Chem. Chem. Phys. 14, 15953(2012).
    [12] G. Y. Gou, J. W. Bennett, H. Takenaka, and A. M. Rappe, Phys. Rev. B 83, 205115(2011).
    [13] R. Nechache, C. Harnagea, S. Licoccia, E. Traversa, A. Ruediger, A. Pignolet, and F. Rosei, Appl. Phys. Lett. 98, 202902(2011).
    [14] F. Wang, I. Grinberg, and A. M. Rappe, Appl. Phys. Lett. 104, 152903(2014).
    [15] R. E. Cohen, Nature 358, 136(1992).
    [16] J. Liu, G. Chen, Z. Li, and Z. Zhang, Int. J. Hydrogen. Energ. 32, 2269(2007).
    [17] T. Su, H. Jiang, H. Gong, and Y. Zhai, J. Mater. Sci. 45, 3778(2010).
    [18] Z. Wang, H. Gu, Y. Hu, K. Yang, M. Hu, D. Zhou, and J. Guan, Cryst. Eng. Comm. 12, 3157(2010).
    [19] Y. Shen and Z. Zhou, Chem. Phys. Lett. 454, 114(2008).
    [20] W. Zhou, H. Deng, P. Yang, and J. Chu, Appl. Phys. Lett. 105, 111904(2014).
    [21] H. Zhang, J. Dai, and Y. Song, Chem. Phys. Lett. 619, 163(2015).
    [22] K. Kakimoto, I. Masuda, and H. Ohsato, Key. Eng. Mat. 269, 7(2004).
    [23] I. S. Golovina, B. D. Shanina, S. P. Kolesnik, I. N. Geifman, and A. A. Andriiko, J. Appl. Phys. 114, 174106(2013).
    [24] A. M. Quittet, M. I. Bell, M. Krauzman, and P. M. Raccah, Phys. Rev. B 14, 5086(1976).
    [25] Z. X. Shen, Z. P. Hu, T. C. Chong, C. Y. Beh, S. H. Tang, and M. H. Kuok, Phy. Rev. B 52, 3976(1995).
    [26] L. Luisman, A. Feteira, and K. Reichmann, Appl. Phys. Lett. 99, 192901(2011).
    [27] J. Geyer-Lippmann, A. Simon, and F. Z. Stollmaier, Anorg. Allg. Chem. 516, 55(1984).
    [28] N. Oezer, T. Barreto, T. Bueyueklimanli, and C. M. Lampert, Sol. Energy Mater. Sol. Cells 36, 433(1995).
    [29] X. Wang, S. Y. Wang, W. F. Liu, X. J. Xi, H. Zhang, F. Guo, X. L. Xu, M. Li, L. Liu, C. Zhang, X. Li, and J. B. Yang, J. Nanopart Res. 17, 209(2015).
    [30] P. Mills and J. L. Sullivan, J. Phys. D 16, 723(1983).
    [31] J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627(1966).
    [32] Q. Ding, Y. Yuan, X. Xiong, R. Li, H. Huang, Z. Li, T. Yu, Z. Zou, and S. Yang, J. Phys. Chem. C 112, 18846(2008).
    [33] T. Su, H. Jiang, H. Gong, and Y. Zhai, J. Mater. Sci. 45, 3778(2010).
    [34] S. A. Basun and D. R. Evans, Phys. Rev. B 93, 094102(2016).
    [35] J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173(2005).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1097) PDF downloads(804) Cited by()

Proportional views
Related

Narrow Band Gap and Roomtemperature Ferromagnetism in KNb1-xFexO3-δ

doi: 10.1063/1674-0068/30/cjcp1608154

Abstract: We have investigated the structure, optical and magnetic properties of ferroelectric KNb1-xFexO3-δ (X=0, 0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25) synthesized by a traditional solid-state reaction method. According to the X-ray diffraction and the results of Rietveld refinement, all the samples maintain orthorhombic distorted perovskite structures with Amm2 space group without any secondary phase, suggesting the well incorporation of Fe ions into the KNbO3 matrix. With the increase of Fe concentration, the band gap of each sample is decreased gradually, which is much smaller than the 3.18 eV band gap of pure KNbO3. Through X-ray photoelectron spectrum analysis, the increased density of oxygen vacancy and Fe ions may be responsible for the observed decrease in band gap. Compared with the pure KNbO3, Fe doped samples exhibit room-temperature weak ferromagnetism. The ferromagnetism in KNb1-xFexO3-δ with low-concentration dopants (x=0.01-0.10) can be attributed to the bound magnetic polaron mediated exchange. The enhancement of magnetism for the high-concentration (x=0.10-0.20) doped samples may arise from the further increase of magnetic Fe ions.

Dan Nie, Jiang Zhang, Wen-ji Deng, Xi Chen, Zhong-quan Mao, Ling-yun Tang. Narrow Band Gap and Roomtemperature Ferromagnetism in KNb1-xFexO3-δ[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 97-102. doi: 10.1063/1674-0068/30/cjcp1608154
Citation: Dan Nie, Jiang Zhang, Wen-ji Deng, Xi Chen, Zhong-quan Mao, Ling-yun Tang. Narrow Band Gap and Roomtemperature Ferromagnetism in KNb1-xFexO3-δ[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 97-102. doi: 10.1063/1674-0068/30/cjcp1608154
Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return