Yan Zhou, Li-qiang Yan, Zhi-neng Kong, Wen-qi Du, Bao-ying Wu, Zheng-jian Qi. Two Rhodamine-based Turn on Chemosensors with High Sensitivity, Selectivity, and Naked-Eye Detection for Hg2+[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 225-230. doi: 10.1063/1674-0068/30/cjcp1608153
Citation: Yan Zhou, Li-qiang Yan, Zhi-neng Kong, Wen-qi Du, Bao-ying Wu, Zheng-jian Qi. Two Rhodamine-based Turn on Chemosensors with High Sensitivity, Selectivity, and Naked-Eye Detection for Hg2+[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 225-230. doi: 10.1063/1674-0068/30/cjcp1608153

Two Rhodamine-based Turn on Chemosensors with High Sensitivity, Selectivity, and Naked-Eye Detection for Hg2+

doi: 10.1063/1674-0068/30/cjcp1608153
  • Received Date: 2016-08-05
  • Rev Recd Date: 2016-09-13
  • Two novel rhodamine-based fluorescence enhanced molecular probes (RA1 and RA2) were synthesized, which were both designed as comparative fluoroionophore and chromophore for the optical detection of Hg2+. The recognizing behaviors were investigated both experimentally and computationally. They exhibited high selectivity and sensitivity for Hg2+ over other commonly coexistent metal ions in CH3CN/H2O (1:1, V/V) solution. Test shows that hydroxy benzene of rich electron was beneficial to the chelate of Hg2+ with sensors. The detection limit was measured to be at least 0.14 μmol/L. After addition of Hg2+, the color changed from colourless to pink, which was easily detected by the naked eye in both solution and hydrogel sensor.
  • 加载中
  • [1] O. Tavakoli and H. Yoshida, Environ. Sci. Technol. 39, 2357 (2005).
    [2] F. Yan, T. Zheng, S. Guo, D. Shi, Z. Han, S. Zhou, and L. Chen, Spectrochim. Acta A 151, 881 (2015).
    [3] G. B. Cai, G. X. Zhao, X. K. Wang, and S. H. Yu, J. Phys. Chem. C 114, 12948 (2010).
    [4] P. B. Tchounwou, W. K. Ayensu, N. Ninashvili, and D. Sutton, Environ. Toxicol. 18, 149 (2003).
    [5] J. S. Wu, I. C. Hwang, K. S. Kim, and J. S. Kim, Org. Lett. 9, 907 (2007).
    [6] S. H. Kim, J. S. Kim, S. M. Park, and S. K. Chang, Org. Lett. 8, 371 (2006).
    [7] M. Wennberg, T. Lundh, I. A. Bergdahl, G. Hallmans, J. H. Jansson, B. Stegmayr, H. M. Custodio, and S. Skerfving, Environ. Res. 100, 330 (2006).
    [8] J. W. Lee, H. S. Jung, P. S. Kwon, J. W. Kim, R. A. Bartsch, Y. Kim, S. J. Kim, and J. S. Kim, Org. lett. 10, 3801 (2008).
    [9] W. H. Hsu, S. J. Jiang, and A. C. Sahayam, Talanta 117, 268 (2013).
    [10] A. Q. Shah, T. G. Kazi, J. A. Baig, H. I. Afridi, and M. B. Arain, Food Chem. 134, 2345 (2012).
    [11] J. F. Callan, A. P. de Silva, and D. C. Magri, Tetrahe-dron 61, 8551 (2005).
    [12] R. W. Ramette and E. B. Sandell, J. Am. Chem. Soc. 78, 4872 (1956).
    [13] D. S. Mcclure, J. Chem. Phys. 20, 682 (1952).
    [14] M. M. Pires and J. Chmielewski, Org. Lett. 10, 837 (2008).
    [15] J. F. Zhang, Y. Zhou, J. Yoon, Y. Kim, S. J. Kim, and J. S. Kim, Org. Lett. 12, 3852 (2010).
    [16] B. Bag and A. Pal, Org. Biomol. Chem. 9, 915 (2011).
    [17] F. Y. Yan, D. L. Cao, M. Wang, N. Yang, Q. H. Yu, L. F. Dai, and L. Chen, J. Fluoresc. 22, 1249 (2012).
    [18] H. L. Li, J. L. Fan, F. L. Song, H. Zhu, J. J. Du, S. G. Sun, and X. J. Peng, Chem. Eur. J. 16, 12349 (2010).
    [19] L. X. Wu, Y. R. Dai, and G. Marriott, Org. Lett. 13, 2018 (2011).
    [20] H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, and J. Yoon, Chem. Soc. Rev. 37, 1465 (2008).
    [21] M. Beija, C. A. M. Afonso, and J. M. G. Martinho, Chem. Soc. Rev. 38, 2410 (2009).
    [22] B. Sen, M. Mukherjee, S. Pal, K. Dhara, S. K. Mandal, A. R. Khuda-Bukhsh, and P. Chattopadhyay, Rsc. Adv. 4, 14919 (2014).
    [23] N. Wanichacheva, O. Hanmeng, S. Kraithong, and K. Sukrat, J. Photoch. Photobio. A 278, 75 (2014).
    [24] B. Biswal and B. Bag, Org. Biomol. Chem. 11, 4975 (2013).
    [25] X. Zhang, Y. Shiraishi, and T. Hirai, Org. Lett. 9, 5039 (2007).
    [26] L. K. Kumawat, N. Mergu, A. K. Singh, and V. K. Gupta, Sensor Actuat B 212, 389 (2015).
    [27] S. Chemate and N. Sekar, Sensor Actuat B 220, 1196 (2015).
    [28] H. Zheng, Z. H. Qian, L. Xu, F. F. Yuan, L. D. Lan, and J. G. Xu, Org Lett. 8, 859 (2006).
    [29] X. Cheng, Q. Li, J. Qin, and Z. Li, ACS Appl. Mater. Inter. 2, 1066 (2010).
    [30] C. Y. Huang, Method Enzymol. 87, 509 (1982).
    [31] J. L. Zhang, Y. M. Zhou, W. P. Hu, L. Zhang, Q. Huang, and T. S. Ma, Sensor Actuat. B 183, 290 (2013).
    [32] J. Ding, H. Li, C. Wang, J. Yang, Y. Xie, Q. Peng, Q. Li, and Z. Li, ACS Appl. Mater. Inter. 7, 11369 (2015).
    [33] A. Papadopoulou, R. J. Green, and R. A. Frazier, J. Agr. Food Chem. 53, 158 (2005).
    [34] E. S. Lander and N. J. Schork, Science 266, 353 (1994).
    [35] Y. J. Liu, H. Chao, J. H. Yao, H. Li, Y. X. Yuan, and L. N. Ji, Helv. Chim. Acta 87, 3119 (2004).
    [36] Y. Tian, Y. Wang, Y. Xu, Y. Liu, D. Li, and C. Fan, Sci. China Chem. 58, 514 (2015).
    [37] Y. Wang, Y. Cui, R. Liu, F. Gao, L. Gao, and X. Gao, Sci. China Chem. 58, 819 (2015).
    [38] X. J. Liu, M. Zhang, M. P. Yang, B. Li, Z. Cheng, and B. Q. Yang, Tetrahedron 71, 8194 (2015).
    [39] H. Ozay and O. Ozay, Chem. Eng. J. 232, 364 (2013)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(971) PDF downloads(832) Cited by()

Proportional views
Related

Two Rhodamine-based Turn on Chemosensors with High Sensitivity, Selectivity, and Naked-Eye Detection for Hg2+

doi: 10.1063/1674-0068/30/cjcp1608153

Abstract: Two novel rhodamine-based fluorescence enhanced molecular probes (RA1 and RA2) were synthesized, which were both designed as comparative fluoroionophore and chromophore for the optical detection of Hg2+. The recognizing behaviors were investigated both experimentally and computationally. They exhibited high selectivity and sensitivity for Hg2+ over other commonly coexistent metal ions in CH3CN/H2O (1:1, V/V) solution. Test shows that hydroxy benzene of rich electron was beneficial to the chelate of Hg2+ with sensors. The detection limit was measured to be at least 0.14 μmol/L. After addition of Hg2+, the color changed from colourless to pink, which was easily detected by the naked eye in both solution and hydrogel sensor.

Yan Zhou, Li-qiang Yan, Zhi-neng Kong, Wen-qi Du, Bao-ying Wu, Zheng-jian Qi. Two Rhodamine-based Turn on Chemosensors with High Sensitivity, Selectivity, and Naked-Eye Detection for Hg2+[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 225-230. doi: 10.1063/1674-0068/30/cjcp1608153
Citation: Yan Zhou, Li-qiang Yan, Zhi-neng Kong, Wen-qi Du, Bao-ying Wu, Zheng-jian Qi. Two Rhodamine-based Turn on Chemosensors with High Sensitivity, Selectivity, and Naked-Eye Detection for Hg2+[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 225-230. doi: 10.1063/1674-0068/30/cjcp1608153
Reference (39)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return