Hai-lin Zou, Xin Liang, Zhong-hui Wang, Sheng Cheng, Hong-fa Xiang. Preparation of Li4Ti5O12 Microspheres with a Pure Cr2O3 Coating Layer and its Effect for Lithium Storage[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 103-111. doi: 10.1063/1674-0068/30/cjcp1607152
Citation: Hai-lin Zou, Xin Liang, Zhong-hui Wang, Sheng Cheng, Hong-fa Xiang. Preparation of Li4Ti5O12 Microspheres with a Pure Cr2O3 Coating Layer and its Effect for Lithium Storage[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 103-111. doi: 10.1063/1674-0068/30/cjcp1607152

Preparation of Li4Ti5O12 Microspheres with a Pure Cr2O3 Coating Layer and its Effect for Lithium Storage

doi: 10.1063/1674-0068/30/cjcp1607152
  • Received Date: 2016-07-31
  • Rev Recd Date: 2016-10-07
  • The pure Cr2O3 coated Li4Ti5O12 microspheres were prepared by a facile and cheap solutionbased method with basic chromium(III) nitrate solution (pH=11.9). And their Li-storage properties were investigated as anode materials for lithium rechargeable batteries. The pure Cr2O3 works as an adhesive interface to strengthen the connections between Li4Ti5O12 particles, providing more electric conduction channels, and reduce the inter-particle resistance. Moreover, LixCr2O3, formed by the lithiation of Cr2O3, can further stabilize Li7Ti5O12 with high electric conductivity on the surface of particles. While in the acid chromium solution (pH=3.2) modification, besides Cr2O3, Li2CrO4 and TiO2 phases were also found in the final product. Li2CrO4 is toxic and the presence of TiO2 is not welcome to improve the electrochemical performance of Li4Ti5O12 microspheres. The reversible capacity of 1% Cr2O3-coated sample with the basic chromium solution modification was 180 mAh/g at 0.1 C, and 134 mAh/g at 10 C. Moreover, it was even as high as 127 mAh/g at 5 C after 600 cycles. At-20℃, its reversible specific capacity was still as high as 118 mAh/g.
  • 加载中
  • [1] B. Scrosati, J. Hassoun, and Y. K. Sun, Energy Envi ron. Sci. 4, 3287(2011).
    [2] Z. Yang, J. Zhang, M. C. Kintnermeyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Chem. Rev. 111, 3577(2011).
    [3] B. Zhao, R. Ran, M. Liu, and Z. Shao, Mater. Sci. Eng., R 98, 1(2015).
    [4] L. Zhang, H. Xiang, Z. Li, and H. Wang, J. Power Sources 203, 121(2012).
    [5] B. Zhao, X. Deng, R. Ran, M. Liu, and Z. Shao, Adv. Energy Mater. 6, 1500924(2016).
    [6] P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, and H. Wang, Electrochim. Acta 56, 4532(2011).
    [7] L. Qi, S. Chen, Y. Xin, Y. Zhou, Y. Ma, and H. Zhou, Energy Environ. Sci. 7, 1924(2014).
    [8] T. P. Zhou, X. Y. Feng, X. Guo, W. W. Wu, S. Cheng, and H. F. Xiang, Electrochim. Acta 174, 369(2015).
    [9] C. X. Ding, Y. C. Bai, C. Wei, and C. H. Chen, Chin. J. Chem. Phys. 25, 457(2012).
    [10] M. Guo, H. Chen, S. Wang, S. Dai, L. X. Ding, and H. Wang, J. Alloys Compd. 687, 746(2016).
    [11] C. Lin, X. Fan, Y. Xin, F. Cheng, M. O. Lai, H. Zhou, and L. Lu, J. Mater. Chem. A 2, 9982(2014).
    [12] B. Tian, H. Xiang, L. Zhang, Z. Li, and H. Wang, Elec trochim. Acta 55, 5453(2010).
    [13] M. Guo, S. Wang, L. X. Ding, L. Zheng, and H. Wang, J. Mater. Chem. A 3, 10753(2015).
    [14] C. Cheng, H. Liu, X. Xue, S. Cao, H. Cao, and L. Shi, RSC Adv. 4, 63105(2014).
    [15] L. Peng, H. Zhang, L. Fang, Y. Zhang, and Y. Wang, Nanoscale 8, 2030(2016).
    [16] G. Hasegawa, K. Kanamori, T. Kiyomura, H. Kurata, K. Nakanishi, and T. Abe, Adv. Energy Mater. 5, 1400730(2015).
    [17] H. Kageyama, Y. Oaki, and H. Imai, RSC Adv. 4, 44124(2014).
    [18] A. K. Haridas, C. S. Sharma, and T. N. Rao, Small 11, 290(2015).
    [19] X. Feng, H. Zou, H. Xiang, X. Guo, T. Zhou, Y. Wu, W. Xu, P. Yan, C. Wang, J. G. Zhang, and Y. Yu, ACS Appl. Mater. Interf. 8, 16718(2016).
    [20] E. F. Rodriguez, F. Xia, D. Chen, A. F. Hollenkamp, and R. A. Caruso, J. Mater. Chem. A 4, 7772(2016).
    [21] F. Wu, Z. Wang, X. Li, and H. Guo, RSC Adv. 4, 40111(2014).
    [22] L. Zhang, H. Xiang, Z. Li, and H. Wang, J. Power Sources 203, 121(2012).
    [23] L. Zhan, S. Wang, L. X. Ding, Z. Li, and H. Wang, Electrochim. Acta 135, 35(2014).
    [24] X. Guo, H. F. Xiang, T. P. Zhou, W. H. Li, X. W. Wang, J. X. Zhou, and Y. Yu, Electrochim. Acta 109, 33(2013).
    [25] Y. Yang, B. Qiao, X. Yang, L. Fang, C. Pan, W. Song, H. Hou, and X. Ji, Adv. Funct. Mater. 24, 4349(2014).
    [26] Z. Xie, X. Li, W. Li, M. Chen, and M. Qu, J. Power Sources 273, 754(2015).
    [27] J. Liu, K. Song, P. A. van Aken, J. Maier, and Y. Yu, Nano Lett. 14, 2597(2014).
    [28] Y. Tang, L. Liu, H. Zhao, D. Jia, and W. Liu, J. Mater. Chem. A 4, 2089(2016).
    [29] G. D. Du, B. R. Winton, I. M. Hashim, N. Sharma, K. Konstantinov, M. V. Reddy, and Z. P. Guo, RSC Adv. 4, 38568(2014).
    [30] F. Wu, Z. Wang, X. Li, H. Guo, Y. Peng, X. Xiong, Z. He, and Z. Qian, Electrochim. Acta 78, 331(2012).
    [31] B. Wang, J. Cao, Y. Liu, T. Zeng, and L. Li, J. Alloys Compd. 587, 21(2014).
    [32] C. T. Hsieh, I. L. Chen, Y. R. Jiang, and J. Y. Lin, Solid State Ionics 201, 60(2011).
    [33] X. Feng, N. Ding, Y. Dong, C. Chen, and Z. Liu, J. Mater. Chem. A 1, 15310(2013).
    [34] H. Şahan, H. Göktepe, Ş. Patat, and A. Ülgen, Solid State Ionics 181, 1437(2010).
    [35] X. Li, Y. Lin, Y. Lin, H. Lai, and Z. Huang, Rare Metals 31, 140(2012).
    [36] X. Feng, C. Shen, N. Ding, and C. Chen, J. Mater. Chem. 22, 20861(2012).
    [37] X. Y. Feng, D. Ning, W. Li, X. H. Ma, Y. M. Li, and C. H. Chen, J. Power Sources 222, 184(2013).
    [38] C. Chen, Y. Huang, C. An, H. Zhang, Y. Wang, L. Jiao, and H. Yuan, ChemSusChem 8, 114(2015).
    [39] M. G. Verde, L. Baggetto, N. Balke, G. M. Veith, J. K. Seo, Z. Wang, and Y. S. Meng, ACS Nano 10, 4312(2016).
    [40] N. Wang, Z. Bai, Y. Qian, and J. Yang, Adv. Mater. 28, 4126(2016).
    [41] L. Y. Jiang, S. Xin, X. L. Wu, H. Li, Y. G. Guo, and L. J. Wan, J. Mater. Chem. 20, 7565(2010).
    [42] W. T. Li, T. Yuan, W. Zhang, J. Ma, C. Zhang, Y. S. He, X. Z. Liao, and Z. F. Ma, J. Power Sources 285, 51(2015).
    [43] C. Chen, Y. Huang, H. Zhang, X. Wang, G. Li, Y. Wang, L. Jiao, and H. Yuan, J. Power Sources 278, 693(2015).
    [44] H. Song, S. W. Yun, H. H. Chun, M. G. Kim, K. Y. Chung, H. S. Kim, B. W. Cho, and Y. T. Kim, Energy Environ. Sci. 5, 9903(2012).
    [45] S. Grugeon, S. Laruelle, L. Dupont, F. Chevallier, P. L. Taberna, P. Simon, L. Gireaud, S. Lascaud, E. Vidal, and B. Yrieix, Chem. Mater. 17, 5041(2005).
    [46] M. Guo, S. Wang, L. X. Ding, C. Huang, and H. Wang, J. Power Sources, 283, 372(2015).
    [47] Q. Zhang, M. G. Verde, J. K. Seo, X. Li, and Y. S. Meng, J. Power Sources 280, 355(2015).
    [48] T. Yang, T. Qian, M. Wang, X. Shen, N. Xu, Z. Sun, and C. Yan, Adv. Mater. 28, 539(2016).
    [49] Y. Cai, Y. Huang, W. Jia, X. Wang, Y. Guo, D. Jia, Z. Sun, W. Pang, and Z. Guo, J. Mater. Chem. A 4, 9949(2016).
    [50] J. L. Allen, T. R. Jow, and J. Wolfenstine, J. Power Sources 159, 1340(2006).
    [51] T. Yuan, X. Yu, R. Cai, Y. Zhou, and Z. Shao, J. Power Sources 195, 4997(2010).
    [52] H. F. Xiang, Q. Y. Jin, C. H. Chen, X. W. Ge, S. Guo, and J. H. Sun, J. Power Sources 174, 335(2007).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(3601) PDF downloads(912) Cited by()

Proportional views
Related

Preparation of Li4Ti5O12 Microspheres with a Pure Cr2O3 Coating Layer and its Effect for Lithium Storage

doi: 10.1063/1674-0068/30/cjcp1607152

Abstract: The pure Cr2O3 coated Li4Ti5O12 microspheres were prepared by a facile and cheap solutionbased method with basic chromium(III) nitrate solution (pH=11.9). And their Li-storage properties were investigated as anode materials for lithium rechargeable batteries. The pure Cr2O3 works as an adhesive interface to strengthen the connections between Li4Ti5O12 particles, providing more electric conduction channels, and reduce the inter-particle resistance. Moreover, LixCr2O3, formed by the lithiation of Cr2O3, can further stabilize Li7Ti5O12 with high electric conductivity on the surface of particles. While in the acid chromium solution (pH=3.2) modification, besides Cr2O3, Li2CrO4 and TiO2 phases were also found in the final product. Li2CrO4 is toxic and the presence of TiO2 is not welcome to improve the electrochemical performance of Li4Ti5O12 microspheres. The reversible capacity of 1% Cr2O3-coated sample with the basic chromium solution modification was 180 mAh/g at 0.1 C, and 134 mAh/g at 10 C. Moreover, it was even as high as 127 mAh/g at 5 C after 600 cycles. At-20℃, its reversible specific capacity was still as high as 118 mAh/g.

Hai-lin Zou, Xin Liang, Zhong-hui Wang, Sheng Cheng, Hong-fa Xiang. Preparation of Li4Ti5O12 Microspheres with a Pure Cr2O3 Coating Layer and its Effect for Lithium Storage[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 103-111. doi: 10.1063/1674-0068/30/cjcp1607152
Citation: Hai-lin Zou, Xin Liang, Zhong-hui Wang, Sheng Cheng, Hong-fa Xiang. Preparation of Li4Ti5O12 Microspheres with a Pure Cr2O3 Coating Layer and its Effect for Lithium Storage[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 103-111. doi: 10.1063/1674-0068/30/cjcp1607152
Reference (52)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return