Jing Li, Chuan-kui Wang, Yu-zhi Song. Solvent Effects on Two-Photon Absorption of Alkyne and Alkene π-bridging Chromophores[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 63-70. doi: 10.1063/1674-0068/30/cjcp1607142
Citation: Jing Li, Chuan-kui Wang, Yu-zhi Song. Solvent Effects on Two-Photon Absorption of Alkyne and Alkene π-bridging Chromophores[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 63-70. doi: 10.1063/1674-0068/30/cjcp1607142

Solvent Effects on Two-Photon Absorption of Alkyne and Alkene π-bridging Chromophores

doi: 10.1063/1674-0068/30/cjcp1607142
  • Received Date: 2016-07-11
  • Rev Recd Date: 2016-10-24
  • The present work concerns the study of solvent effects on the geometrical structures, as well as one- and two-photon absorption (TPA) processes, for two series of alkyne and alkene π-bridging molecules, within the framework of the polarization continuum model. Particular emphasis was put on the characterization of solvent effects on the molecular geometrical structures and geometric distortion, which were measured by the bond-length-alternation parameter. The π centres in the compounds are seen to play a decisive role in increasing the TPA cross section and nonlinear optical properties. All studied molecules have relatively strong TPA characteristics, while the alkyne π-bridging ones yield larger TPA cross sections.
  • 加载中
  • [1] C. K. Wang, P. Macak, Y. Luo, and H. Ågren, J. Chem. Phys. 114, 9813(2001).
    [2] A. Mukherjee, Appl. Phys. Lett. 622, 3423(1993).
    [3] L. W. Tutt and T. F. Boggess, Prog. Quant. Electron. 17, 299(1993).
    [4] E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, and M. G. Petersen, Proc. SPIE Int. Soc. Opt. Eng. 3269, 68(1998).
    [5] S. Maruo, O. Nakamura, and S. Kawata, Opt. Lett. 22, 132(1997).
    [6] H. B. Sun, S. Matsuo, and H. Misawa, Appl. Phys. Lett. 74, 786(1999).
    [7] S. S. P. Chou and C. Y. Yu, Synth. Met. 142, 259(2003).
    [8] T. Kogel, D. Beljonne, F. Meyers, J. Perry, S. Marder, and J. Bredas, Chem. Phys. Lett. 298, 1(1998).
    [9] K. D. Belfield, A. R. Morales, J. Hales, D. Hagan, E. W. Van Stryland, V. Chapela, and J. Percino, Chem. Mater. 16, 2267(2004).
    [10] A. R. Morales, K. D. Belfield, J. Hales, E. W. Van Stryland, and D. D. Hagan, Chem. Mater. 18, 4972(2006).
    [11] S. Marder, Chem. Commun. 2, 131(2006).
    [12] A. R. Morales, A. Frazer, A. W. Woodward, H. Y. AhnWhite, A. Fonari, P. Tongwa, T. Timofeeva, and K. D. Belfield, J. Org. Chem. 78, 1014(2013).
    [13] G. W. Githaiga, A. W. Woodward, A. R. Morales, M. V. Bondar, and K. D. Belfield, J. Phys. Chem. C 119, 21053(2015).
    [14] W. V. Moreshead, O. V. Przhonska, M. V. Bondar, A. D. Kachkovski, I. H. Nayyar, A. E. Masunov, A. W. Woodward, and K. D. Belfield, J. Phys. Chem. C 117, 23133(2013).
    [15] J. Li, Y. P. Sun, Z. L. Li, X. N. Song, and C. K. Wang, Chem. Phys. Lett. 464, 9(2008).
    [16] P. Macak, Y. Luo, P. Norman, and H. Ågren, J. Chem. Phys. 113, 7055(2000).
    [17] J. Yoo, S. K. Yang, M. Y. Jeong, H. C. Ahn, S. J. Jeon, and B. R. Cho, Org. Lett. 5, 645(2003).
    [18] M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, Science 281, 1653(1998).
    [19] S. K. Pati, T. J. Marks, and M. A. Ratner, J. Am. Chem. Soc. 123, 7287(2001).
    [20] C. K. Wang, P. Macak, Y. Luo, and H. Ågren, J. Chem. Phys. 114, 9813(2001).
    [21] C. K. Wang, K. Zhao, Y. Su, R. Yan, X. Zhao, and Y. Luo, J. Chem. Phys. 119, 1208(2003).
    [22] Y. H. Sun, K. Zhao, C. K. Wang, Y. Luo, Y. X. Yan, X. T. Tao, and M. H. Jiang, Chem. Phys. Lett. 394, 176(2004).
    [23] D. T. McQuade, A. E. Pullen, and T. M. Swager, Chem. Rev. 100, 2537(2000).
    [24] S. Günes, H. Neugebaueer, and N. S. Sariciftci, Chem. Rev. 107, 1324(2007).
    [25] M. Kivala and F. Diederich, Acc. Chem. Res. 42, 235(2009).
    [26] B. Liu, J. Liu, H. Q. Wang, Y. D. Zhao, and Z. L. Huang, J. Mole. Stru. 833, 82(2007).
    [27] K. Zhao, L. Ferrighi, C. K. Wang, and Y. Luo, J. Chem. Phys. 126, 204509(2007).
    [28] H. Y. Woo, B. Liu, B. Kohler, D. Korystov, A. Mikhailovsky, and G. C. Bazan, J. Am. Chem. Soc. 127, 14721(2005)
    [29] M. Johnsen and P. R. Ogilby, J. Phys. Chem. A 112, 7831(2008).
    [30] Y. Zhao, A. M. Ren, J. K. Feng, X. Zhou, X. C. Ai, and W. J. Su, Phys. Chem. Chem. Phys. 11, 11538(2009).
    [31] H. Wang, Z. Li, P. Shao, J. Qin, and Z. L. Huang, J. Phys. Chem. B 114, 22(2010).
    [32] J. J. Shao, Z. P. Guan, Y. L. Yan, C. J. Jiao, Q. H. Xu, and C. Y. Chi, J. Org. Chem. 76, 780(2011).
    [33] M. M. Alam, M. Chattopadhyaya, S. Chakrabarti, and K. Ruud, J. Phys. Chem. Lett. 3, 961(2012).
    [34] R. Cammi, B. Mennucci, and J. Tomasi, J. Am. Chem. Soc. 120, 8834(1998).
    [35] Y. H. Sun, K. Zhao, C. K. Wang, Y. Luo, Y. Ren, X. T. Tao, and M. H. Jiang, J. Mol. Struct:THEOCHEM 682, 185(2004).
    [36] S. R. Marder, C. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J. K. Brédas, and B. M. Pierce, Science 265, 632(1994).
    [37] A. A. Masunov and S. Tretiak, J. Phys. Chem. B 108, 899(2004).
    [38] A. Masunov, S. Tretiak, J. W. Hong, B. Liu, and G. C. Bazan, J. Chem. Phys. 122, 224505(2005).
    [39] Gaussian, References in http://www.gaussian.com
    [40] J. Olsen and P. Jφrgensen, J. Chem. Phys. 82, 3235(1985).
    [41] DALTON, References in http://www.kjemi.uio.no/software/dalton/.
    [42] M. Wierzbicka, L. Bylińska, C. Czaplewski, and W. Wiczk, RSC Adv. 5, 29294(2015).
    [43] Y. Nagano Y, T. Ikoma, K. Akiyama, and S. Tero Kubota, J. Am. Chem. Soc. 125, 14103(2003).
    [44] C. Ferrante, U. Kensy, and B. Dick, J. Phys. Chem. 97, 13457(1993).
    [45] R. Thomas, S. Lakshmi, S. K. Pati, and G. U. Kulkarni, J. Phys. Chem. B 110, 24674(2006).
    [46] T. Vreven, B. Mennucci, C. O. Silva, K. Morokuma, and J. Tomasi, J. Chem. Phys. 115, 62(2001).
    [47] A. Bhaskar, G. Ramakrishna, Z. K. Lu, R. Twieg, J. M. Hales, D. J. Hagan, E. V. Stryland, and T. Goodson, J. Am. Chem. Soc. 128, 11840(2006).
    [48] S. J. Strickler and R. A. Berg, J. Chem. Phys. 37, 814(1962).
    [49] D. Beljonne, W. Wenseleers, E. Zojer, Z. G. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, and J. L. Brédas, Adv. Funct. Mater. 12, 631(2002).
    [50] O. Rubio-Pons, Y. Luo, and H. Ågren, J. Chem. Phys. 124, 094310(2006).
    [51] Y. Z. Song, D. M. Li, X. N. Song, X. M. Huang, and C. K. Wang, J. Mol. Struct:THEOCHEM 772, 75(2006).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(919) PDF downloads(818) Cited by()

Proportional views
Related

Solvent Effects on Two-Photon Absorption of Alkyne and Alkene π-bridging Chromophores

doi: 10.1063/1674-0068/30/cjcp1607142

Abstract: The present work concerns the study of solvent effects on the geometrical structures, as well as one- and two-photon absorption (TPA) processes, for two series of alkyne and alkene π-bridging molecules, within the framework of the polarization continuum model. Particular emphasis was put on the characterization of solvent effects on the molecular geometrical structures and geometric distortion, which were measured by the bond-length-alternation parameter. The π centres in the compounds are seen to play a decisive role in increasing the TPA cross section and nonlinear optical properties. All studied molecules have relatively strong TPA characteristics, while the alkyne π-bridging ones yield larger TPA cross sections.

Jing Li, Chuan-kui Wang, Yu-zhi Song. Solvent Effects on Two-Photon Absorption of Alkyne and Alkene π-bridging Chromophores[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 63-70. doi: 10.1063/1674-0068/30/cjcp1607142
Citation: Jing Li, Chuan-kui Wang, Yu-zhi Song. Solvent Effects on Two-Photon Absorption of Alkyne and Alkene π-bridging Chromophores[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 63-70. doi: 10.1063/1674-0068/30/cjcp1607142
Reference (51)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return