Zhen-lin Zhang, Wen-lou Wang, Shi-lin Liu, Dong-ming Chen. Experimental and Density Functional Theory Calculation Studies on Raman and Infrared Spectra of 1,1'-Binaphthyl-2,2'-diamine[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 7-15. doi: 10.1063/1674-0068/30/cjcp1606118
Citation: Zhen-lin Zhang, Wen-lou Wang, Shi-lin Liu, Dong-ming Chen. Experimental and Density Functional Theory Calculation Studies on Raman and Infrared Spectra of 1,1'-Binaphthyl-2,2'-diamine[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 7-15. doi: 10.1063/1674-0068/30/cjcp1606118

Experimental and Density Functional Theory Calculation Studies on Raman and Infrared Spectra of 1,1'-Binaphthyl-2,2'-diamine

doi: 10.1063/1674-0068/30/cjcp1606118
  • Received Date: 2016-06-01
  • Rev Recd Date: 2016-06-03
  • The IR absorption, visible excited normal Raman, and UV-excited near-resonant Raman (UVRR) spectra of 1,1'-binaphthyl-2,2'-diamine (BINAM) were measured and analyzed. Density functional theory calculations were carried out to investigate its vibrational frequencies, infrared absorption, normal Raman, and near-resonance Raman intensities. The observed Raman and IR bands of BINAM were assigned with respect to the local vibrations of substituted 2-naphthylamine. Several Raman bands of BINAM were found selectively enhanced in the UVRR in comparison with the normal Raman spectrum. Possible excited state geometry distortion was discussed based on the resonance Raman intensity analysis.
  • 加载中
  • [1] L. Pu, Chem. Rev. 98, 2405(1998).
    [2] Y. Chen, S. Yekta, and A. K. Yudin, Chem. Rev. 103, 3155(2003).
    [3] N. Yoshikawa, Y. M. A. Yamada, J. Das, H. Sasai, and M. Shibasaki, J. Am. Chem. Soc. 121, 4168(1999).
    [4] J. R. Robinson, X. Fan, J. Yadav, P. J. Carroll, A. J. Wooten, M. A. Pericas, E. J. Schelter, and P. J. Walsh, J. Am. Chem. Soc. 136, 8034(2014).
    [5] Y. Shibata and M. Yamanaka, J. Org. Chem. 78, 3731(2013).
    [6] M. N. Grayson, S. C. Pellegrinet, and J. M. Goodman, J. Am. Chem. Soc. 134, 2716(2012).
    [7] N. Takenaka, Y. Huang, and V. H. Rawal, Tetrahedron 58, 8299(2002).
    [8] G. Guillena, M. del C. Hita, C. Nájera, and S. F. Viózquez, J. Org. Chem. 73, 5933(2008).
    [9] G. Guillena, M. del C. Hita, C. Nájera, and S. F. Viózquez, Tetrahedron:Asymmetry 18, 2300(2007).
    [10] G. Guillena, M. del C. Hita, and C. Nájera, Tetrahedron:Asymm. 17, 1493(2006).
    [11] G. Guillena, M. del C. Hita, and C. Nájera, Tetrahedron:Asymm. 17, 729(2006).
    [12] A. Bañón-Caballero, G. Guillena, and C. Nájera, Green Chem. 12, 1599(2010).
    [13] W. L. Duan, M. Shi, and G. B. Rong, Chem. Commun. 2916(2003).
    [14] A. R. Chianese and R. H. Crabtree, Organometallics 24, 4432(2005).
    [15] H. M. Nelson, J. S. Patel, H. P. Shunatona, and F. D. Toste, Chem. Sci. 6, 170(2015).
    [16] Q. Xu, X. Gu, S. Liu, Q. Dou, and M. Shi, J. Org. Chem. 72, 2240(2007).
    [17] B. Tan, N. R. Candeias, and C. F. Barbas Ⅲ, Nat. Chem. 3, 473(2011).
    [18] S. N. Sluijter, L. J. Jongkind, and C. J. Elsevier, Eur. J. Inorg. Chem. 2948(2015).
    [19] H. I. S. Nogueira and S. M. O. Quintal, Spectrochim. Acta A 56, 959(2000).
    [20] V. Setnička, M. Urbanová, P. Bouř, V. Král, and K. Volka, J. Phys. Chem. A 105, 8931(2001).
    [21] C. F. Chang, S. C. Wang, and S. Shigeto, J. Phys. Chem. C 118, 2702(2014).
    [22] Z. Y. Li, D. M. Chen, T. J. He, and F. C. Liu, J. Phys. Chem. A 111, 4767(2007).
    [23] S. Fujiyoshi, S. Takeuchi, and T. Tahara, J. Phys. Chem. A 108, 5938(2004).
    [24] K. Takaishi, J. Suzuki, T. Yabe, H. Asano, M. Nishikawa, D. Hashizume, A. Muranaka, M. Uchiyama, and A. Yokoyama, Org. Lett. 17, 4098(2015).
    [25] L. G. Da, T. T. Lu, M. Xiang, T. J. He, and D. M. Chen, Chin. J. Chem. Phys. 21, 367(2008).
    [26] M. A. Belkin, S. H. Han, X. Wei, and Y. R. Shen, Phys. Rev. Lett. 87, 113001(2001).
    [27] N. Ji, V. Ostroverkhov, M. A. Belkin, Y. J. Shiu, and Y. R. Shen, J. Am. Chem. Soc. 128, 8845(2006).
    [28] M. A. Belkin and Y. R Shen, Phys. Rev. Lett. 91, 213907(2003).
    [29] R. H. Zheng, D. M. Chen, W. M. Wei, T. J. He, and F. C. Liu, J. Phys. Chem. B 110, 4480(2006).
    [30] R. H. Zheng, W. M. Wei, Y. Y. Jing, H. Liu, and Q. Shi, J. Phys. Chem. C 117, 11117(2013).
    [31] V. Liégeois, ChemPhysChem 10, 2017(2009).
    [32] A. D. Becke, J. Chem. Phys. 98, 5648(1993).
    [33] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785(1988).
    [34] R. E. Oakes, S. J. Spence, and S. E. J. Bell, J. Phys. Chem. A 107, 2964(2003).
    [35] A. P. Scott and L. Radom, J. Phys. Chem. 100, 16502(1996).
    [36] R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454(1996).
    [37] M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys. 108, 4439(1998).
    [38] R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 109, 8218(1998).
    [39] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01, Wallingford CT:Gaussian, Inc., (2013).
    [40] J. R. Scherer, J. Chem. Phys. 36, 3308(1962).
    [41] B. B. Johnson and W. L. Peticolas, Annu. Rev. Phys. Chem. 27, 465(1976).
    [42] R. J. H. Clark and T. J. Dines, Angew. Chem Int. Ed. Engl. 25, 131(1986).
    [43] S. Hassing and O. S. Mortensen, J. Mol. Spectrosc. 87, 1(1981).
    [44] I. Tehver, H. Kaasik, and V. Hizhnyakov, J. Raman Spectrosc. 33, 639(2002).
    [45] H. Torii, M. Tasumi, I. M. Bell, and R. J. H. Clark, Chem. Phys. 216, 67(1997).
    [46] J. A. Shelnutt, L. D. Cheung, R. C. C. Chang, N. T. Yu, and R. H. Felton, J. Chem. Phys. 66, 3387(1977).
    [47] L. D. Cheung, N. T. Yu, and R. H. Felton, Chem. Phys. Lett. 55, 527(1978).
    [48] A. Y. Hirakawa and M. Tsuboi, Science 188, 359(1975).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1142) PDF downloads(811) Cited by()

Proportional views
Related

Experimental and Density Functional Theory Calculation Studies on Raman and Infrared Spectra of 1,1'-Binaphthyl-2,2'-diamine

doi: 10.1063/1674-0068/30/cjcp1606118

Abstract: The IR absorption, visible excited normal Raman, and UV-excited near-resonant Raman (UVRR) spectra of 1,1'-binaphthyl-2,2'-diamine (BINAM) were measured and analyzed. Density functional theory calculations were carried out to investigate its vibrational frequencies, infrared absorption, normal Raman, and near-resonance Raman intensities. The observed Raman and IR bands of BINAM were assigned with respect to the local vibrations of substituted 2-naphthylamine. Several Raman bands of BINAM were found selectively enhanced in the UVRR in comparison with the normal Raman spectrum. Possible excited state geometry distortion was discussed based on the resonance Raman intensity analysis.

Zhen-lin Zhang, Wen-lou Wang, Shi-lin Liu, Dong-ming Chen. Experimental and Density Functional Theory Calculation Studies on Raman and Infrared Spectra of 1,1'-Binaphthyl-2,2'-diamine[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 7-15. doi: 10.1063/1674-0068/30/cjcp1606118
Citation: Zhen-lin Zhang, Wen-lou Wang, Shi-lin Liu, Dong-ming Chen. Experimental and Density Functional Theory Calculation Studies on Raman and Infrared Spectra of 1,1'-Binaphthyl-2,2'-diamine[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 7-15. doi: 10.1063/1674-0068/30/cjcp1606118
Reference (48)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return