Bing-hua Yao, Chao Peng, Yang-qing He, Wen Zhang, Yan Yu, Ting Zhang. Preparation and Visible-Light Photocatalytic Activity of FeTPP-Cr-TiO2 Microspheres[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 717-724. doi: 10.1063/1674-0068/29/cjcp1605117
Citation: Bing-hua Yao, Chao Peng, Yang-qing He, Wen Zhang, Yan Yu, Ting Zhang. Preparation and Visible-Light Photocatalytic Activity of FeTPP-Cr-TiO2 Microspheres[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 717-724. doi: 10.1063/1674-0068/29/cjcp1605117

Preparation and Visible-Light Photocatalytic Activity of FeTPP-Cr-TiO2 Microspheres

doi: 10.1063/1674-0068/29/cjcp1605117
  • Received Date: 2016-05-27
  • Rev Recd Date: 2016-10-14
  • Tetraphenyl-porphyrin iron (FeTPP) was chosen to sensitize Cr doped TiO2 (Cr-TiO2) nanoparticles, a novel multimodified photocatalyst FeTPP-Cr-TiO2 with excellent visiblelight photocatalytic activity was successfully synthesized. The FeTPP-Cr-TiO2 microspheres were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electronic microscopy, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectra and N2 adsorption-desorption isotherms. The photocatalytic activity of FeTPP-Cr-TiO2 was evaluated by degradations of methylene blue in aqueous solution under irradiation with Xe lamp (150 W). The results showed that the FeTPP-Cr-TiO2 multimodified photocatalyst was anatase phase with high specific surface area (74.7 m2/g), and exhibited higher photocatalytic degradation efficiency than Cr-TiO2 and FeTPP-TiO2. The photocatalytic degradations of three quinolone antibiotics (lomefloxacin, norfloxacin, and ofloxacin) were further estimated for the feasibility of practical application of catalyst in wastewater treatment. It is desirable that photodegradation of antibiotics with FeTPP-Cr-TiO2 achieved pretty high degradation rates and all followed the pseudo first-order reaction model, and the rate constants k of 3.02×10-2, 2.81×10-2, and 3.86×10-2 min-1 and the half-lifes t1/2 of 22.9, 24.6, and 17.9 min were achieved respectively.
  • 加载中
  • [1] K. Nakata and A. Fujishima, J. Photochem. Photobio. C 13, 3(2012).
    [2] Y. Su, J. S. Wu, X. Quan, and S. Chen, Desalination 252, 1(2010).
    [3] H. A. Le, L. T. Linh, S. Chin, and J. Jurng, Powder Technol. 225, 7(2012).
    [4] J. F. Niu, B. H. Yao, C. Peng, W. T. Zhang, and Y. Q. Chen, Integrated Ferroelectrics 152, 1(2014).
    [5] C. Han, M. Pelaez, V. Likodimos, A. G. Kontos, P. Falaras, K. OShea, and D. D. Dionysiou, Appl. Catal. B 107, 1(2011).
    [6] H. Diker, C. Varlikli, K. Mizrak, and A. Dana, Energy 36, 2(2011).
    [7] J. Zhao, B. H. Yao, Q. He, and T. Zhang, J. Hazard. Mater. 229/230, 3(2012).
    [8] H. Park, A. Bak, Y. Y. Ahn, J. Choi, and M. R. Hoffmannn, J. Hazard. Mater. 211/212, 3(2012).
    [9] W. A. Wang, Q. Shi, Y. P. Wang, J. L. Cao, G. Q. Liu, and P. Y. Peng, Appl. Surf. Sci. 257, 8(2011).
    [10] P. S. Archana, R. Jose, T. M. Jin, C. Vijila, M. M. Yusoff, and S. Ramakrishna, J. Am. Ceram. Soc. 93, 12(2010).
    [11] W. Sangkhun, L. Laokiat, V. Tanboonchuy, P. Khamdahsag, and N. Grisdanurak, Superlattices Microstruct. 52, 4(2012).
    [12] J. G. McEvoy, W. Q. Cui, and Z. S. Zhang, Catal. Today 207, 3(2012).
    [13] T. Sreethawong and S. Yoshikawa, Chem. Eng. J. 197, 15(2012).
    [14] Y. Q. Wang, X. D. Jiang, and C. X. Pan, J. Alloys Compd. 538, 2(2012).
    [15] H. Matsui, Y. Saitou, S. Karuppuchamy, M. A. Hassan, and M. Yoshihara, J. Alloys Compd. 538, 15(2012).
    [16] M. Y. Duan, J. Li, M. Li, Z. Q. Zhang, and C. Wang, Appl. Surf. Sci. 258, 14(2012).
    [17] J. F. Lei, X. P. Li, W. S. Li, F. Q. Sun, D. S. Lu, and J. Yi, Int. J. Hydrogen Energy 36, 14(2011).
    [18] N. M. Mohamed, R. Bashiri, F. K. Chong, S. Sufian, and S. Kakooei, Int. J. Hydrogen Energy 40, 40(2015).
    [19] R. Dholam, N. Patel, A. Santini, and A. Miotello, Int. J Hydrogen Energy 35, 18(2010).
    [20] S. C. Xu, S. S. Pan, Y. Xu, Y. Y. Luo, Y. X. Zhang, and G. H. Li, J Hazard. Mater. 283, 11(2015).
    [21] Y. H. Peng, G. F. Huang, and W. Q. Huang, Adv. Powder Technol. 23, 1(2012).
    [22] R. H. Zhang, Q. Wang, J. Liang, Q. Li, J. F. Dai, and W. X. Li, Phys. B 407, 14(2012).
    [23] N. Massihi, M. R. Mohammadi, A. M. Bakhshayesh, and M. A. Jalebi, Electrochimica Acta 111, 30(2013).
    [24] K. Yang, W. H. Pu, Y. B. Tan, M. Zhang, C. Z. Yang, and J. D. Zhang, Mat. Sci. Semicon. Proc. 27, 7(2014).
    [25] C. V. Kumar, D. Raptis, E. N. Koukaras, L. Sygellou, and P. Lianos, Organic Electronics 25, 2(2015).
    [26] C. Wang, H. S. Shi, and Y. Li, Appl. Surf. Sci. 258, 10(2012).
    [27] W. J. Sun, J. Li, G. P. Yao, F. X. Zhang, and J. L. Wang, Appl. Surf. Sci. 258, 2(2011).
    [28] J. T. Aldajaei and S. Gronert, Int. J. Mass Spectro. 316/318, 15(2012).
    [29] T. Hasobe, S. Hattori, P. V. Kamat, and S. Fukuzumi, Tetrahedron 62, 9(2006).
    [30] C. Wang, G. M. Yang, J. Li, G. Mele, R. Slota, M. A. Broda, M. Y. Duan, G. Vasapollo, X. F. Zhang, and F. X. Zhang, Dyes Pigments 80, 3(2009).
    [31] C. Peng, B. H. Yao, W. Zhang, J. F. Niu, and J. Zhao, Chin. J. Chem. Phys. 27, 2(2014).
    [32] X. Q. Li, L. F. Liu, S. Z. Kang, J. Mu, and G. D. Li, Catal. Commun. 17, 5(2012).
    [33] H. Y. Huang, X. T. Gu, J. H. Zhou, K. Ji, H. L. Liu, and Y. Y. Feng, Catal. Commun. 11, 1(2009).
    [34] B. H. Yao, C. Peng, W. Zhang, Q. K. Zhang, J. F. Niu, and J. Zhao, Appl. Catal. B 174, 32(2015).
    [35] M. Y. Chang, Y. H. Hsieh, T. C. Cheng, K. S. Yao, M. C. Wei, and C. Y. Chang, Thin Solid Films 517, 14(2009).
    [36] A. Kathiravan and R. Renganathan, J. Colloid Interf. Sci. 331, 4(2009).
    [37] J. F. Niu, B. H. Yao, Y. Q. Chen, C. Peng, X. J. Yu, J. Zhang, and G. H. Bai, Appl. Surf. Sci. 271, 5(2013).
    [38] D. M. Chen, D. Yang, J. Q. Geng, J. H. Zhu, and Z. Y. Jiang, Appl. Surf. Sci. 255, 8(2008).
    [39] T. T. Le, M. S. Akhtar, D. M. Park, J. C. Lee, and O. B. Yang, Appl. Catal. B 111/112, 3(2012).
    [40] S. J. Zhang, Ultrasonics Sonochem. 19, 4(2012).
    [41] T. Miyamoto, Q. Q. Zhu, M. Igrashi, R. Kodama, S. Maeno, and M. Fukushima, J. Mol. Catal. B 119, 4(2015).
    [42] G. P. Yao, J. Li, Y. Luo, and W. J. Sun, J. Mol. Catal. A 361/362, 7(2012).
    [43] W. J. Sun, J. Li, G. Mele, Z. Q. Zhang, and F. X. Zhang, J. Mol. Catal. A 366, 5(2013).
    [44] S. J. Zhang, Ultrason. Sonochem. 19, 4(2012).
    [45] J. F. Zhu, Z. G. Deng, F. Chen, J. L. Zhang, H. J. Chen, M. Anpo, J. Z. Huang, and L. Z. Zhang, Appl. Catal. B 62, 3(2006).
    [46] A. Ghicov, B. Schmidt, J. Kunze, and P. Schmuki, Chem. Phys. Lett. 433, 4(2007).
    [47] G. S. Machado, F. Wypych, and S. Nakagaki, Appl. Catal. A 413/414, 3(2012).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(750) PDF downloads(689) Cited by()

Proportional views
Related

Preparation and Visible-Light Photocatalytic Activity of FeTPP-Cr-TiO2 Microspheres

doi: 10.1063/1674-0068/29/cjcp1605117

Abstract: Tetraphenyl-porphyrin iron (FeTPP) was chosen to sensitize Cr doped TiO2 (Cr-TiO2) nanoparticles, a novel multimodified photocatalyst FeTPP-Cr-TiO2 with excellent visiblelight photocatalytic activity was successfully synthesized. The FeTPP-Cr-TiO2 microspheres were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electronic microscopy, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectra and N2 adsorption-desorption isotherms. The photocatalytic activity of FeTPP-Cr-TiO2 was evaluated by degradations of methylene blue in aqueous solution under irradiation with Xe lamp (150 W). The results showed that the FeTPP-Cr-TiO2 multimodified photocatalyst was anatase phase with high specific surface area (74.7 m2/g), and exhibited higher photocatalytic degradation efficiency than Cr-TiO2 and FeTPP-TiO2. The photocatalytic degradations of three quinolone antibiotics (lomefloxacin, norfloxacin, and ofloxacin) were further estimated for the feasibility of practical application of catalyst in wastewater treatment. It is desirable that photodegradation of antibiotics with FeTPP-Cr-TiO2 achieved pretty high degradation rates and all followed the pseudo first-order reaction model, and the rate constants k of 3.02×10-2, 2.81×10-2, and 3.86×10-2 min-1 and the half-lifes t1/2 of 22.9, 24.6, and 17.9 min were achieved respectively.

Bing-hua Yao, Chao Peng, Yang-qing He, Wen Zhang, Yan Yu, Ting Zhang. Preparation and Visible-Light Photocatalytic Activity of FeTPP-Cr-TiO2 Microspheres[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 717-724. doi: 10.1063/1674-0068/29/cjcp1605117
Citation: Bing-hua Yao, Chao Peng, Yang-qing He, Wen Zhang, Yan Yu, Ting Zhang. Preparation and Visible-Light Photocatalytic Activity of FeTPP-Cr-TiO2 Microspheres[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 717-724. doi: 10.1063/1674-0068/29/cjcp1605117
Reference (47)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return