Shao-hua Chen, Jia-jun Wang, Jing Huang, Qun-xiang Li. g-C3N4/SnS2 Heterostructure: a Promising Water Splitting Photocatalyst[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 36-42. doi: 10.1063/1674-0068/30/cjcp1605113
Citation: Shao-hua Chen, Jia-jun Wang, Jing Huang, Qun-xiang Li. g-C3N4/SnS2 Heterostructure: a Promising Water Splitting Photocatalyst[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 36-42. doi: 10.1063/1674-0068/30/cjcp1605113

g-C3N4/SnS2 Heterostructure: a Promising Water Splitting Photocatalyst

doi: 10.1063/1674-0068/30/cjcp1605113
  • Received Date: 2016-05-20
  • Rev Recd Date: 2016-07-02
  • Graphite-like carbon nitride (g-C3N4) based heterostrutures has attracted intensive attention due to their prominent photocatalytic performance. Here, we explore the g-C3N4/SnS2 coupling effect on the electronic structures and optical absorption of the proposed g-C3N4/SnS2 heterostructure through performing extensive hybrid functional calculations. The obtained geometric structure, band structures, band edge positions and optical absorptions clearly reveal that the g-C3N4 monolayer weakly couples to SnS2 sheet, and forms a typical van der Waals heterojunction. The g-C3N4/SnS2 heterostructure can effectively harvest visible light, and its valence band maximum and conduction band minimum locate in energetically favorable positions for both water oxidation and reduction reactions. Remarkably, the charge transfer from the g-C3N4 monolayer to SnS2 sheet leads to the built-in interface polarized electric field, which is desirable for the photogenerated carrier separation. The built-in interface polarized electric field as well as the nice band edge alignment implys that the g-C3N4/SnS2 heterostructure is a promising g-C3N4 based water splitting photocatalyst with good performance.
  • 加载中
  • [1] A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253(2009).
    [2] T. Hisatomi, J. Kubota, and K. Domen, Chem. Soc. Rev. 43, 7520(2014).
    [3] A. Fujishima and K. Honda, Nature 238, 37(1972).
    [4] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269(2001).
    [5] J. Wang, H. Sun, J. Huang, Q. Li, and J. Yang, J. Phys. Chem. C 118, 7451(2014).
    [6] X. Chen, S. Shen, L. Guo, and S. S. Mao, Chem. Rev. 110, 6503(2010).
    [7] Z. Wang, Y. Liu, B. Huang, Y. Dai, Z. Lou, G. Wang, X. Zhang, and X. Qin, Phys. Chem. Chem. Phys. 16, 2758(2014).
    [8] J. Wang, Q. Meng, J. Huang, Q. Li, and J. Yang, J. Chem. Phys. 140, 174705(2014).
    [9] K. Iwashina and A. Kudo, J. Am. Chem. Soc. 133, 13272(2011).
    [10] Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559(2010).
    [11] H. Kato, K. Asakura, and A. Kudo, J. Am. Chem. Soc. 125, 3082(2003).
    [12] X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, and C. Li, J. Am. Chem. Soc. 130, 7176(2008).
    [13] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M.Carlsson, K. Domen, and M. Antonietti, Nat. Mater. 8, 76(2008).
    [14] J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhong, and Z. Kang, Science 347, 970(2015).
    [15] Y. Zhang, T. Mori, J. Ye, and M. Antonietti, J. Am. Chem. Soc. 132, 6294(2010).
    [16] Y. Di, X. Wang, A. Thomas, and M. Antonietti, ChemCatChem 2, 834(2010).
    [17] J. Zhou, M. Zhang, and Y. Zhu, Phys. Chem. Chem. Phys. 17, 3647(2015).
    [18] Y. Wang, R. Shi, J. Lin, and Y. Zhu, Energy Environ. Sci. 4, 2922(2011).
    [19] L. Xu, W. Q. Huang, L. L. Wang, Z. A. Tian, W. Hu, Y. Ma, X. Wang, A. Pan, and G. F. Huang, Chem. Mater. 27, 1612(2015).
    [20] G. Gao, Y. Jiao, F. Ma, Y. Jiao, E. Waclawik, and A. Du, Phys. Chem. Chem. Phys. 17, 31140(2015).
    [21] F. Zhan, R. Xie, W. Li, J. Li, Y. Yang, Y. Li, and Q. Chen, RSC Adv. 5, 69753(2015).
    [22] C. Li, S. Wang, T. Wang, Y. Wei, P. Zhang, and J. Gong, Small 10, 2783(2014).
    [23] J. Zhang, F. Ren, M. Deng, and Y. Wang, Phys. Chem. Chem. Phys. 17, 10218(2015).
    [24] L. Sun, Y. Qi, C. J. Jia, Z. Jin, and W. Fan, Nanoscale 6, 2649(2014).
    [25] S. Kumar, T. Surendar, A. Baruah, and V. Shanker, J. Mater. Chem. A 1, 5333(2013).
    [26] X. Chia, A. Y. S. Eng, A. Ambrosi, S. M. Tan, and M. Pumera, Chem. Rev. 115, 11941(2015).
    [27] Y. Hou, Z. Wen, S. Cui, X. Guo, and J. Chen, Adv. Mater. 25, 6291(2013).
    [28] Y. Sun, H. Cheng, S. Gao, Z. S. Q. Liu, F. Lei, T. Yao, J. He, S. Wei, and Y. Xie, Angew. Chem. Int. Ed. 51, 8727(2012).
    [29] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169(1996).
    [30] G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15(1996).
    [31] P. E. Blochl, Phys. Rev. B 50, 17953(1994).
    [32] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865(1996).
    [33] S. Grimme, J. Comput. Chem. 27, 1787(2006).
    [34] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188(1976).
    [35] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207(2003).
    [36] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906(2006).
    [37] J. Wang, Z. Guan, J. Huang, Q. Li and J. Yang, J. Mater. Chem. A 2, 7960(2014).
    [38] M. Gajdos, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 045112(2006).
    [39] F. Wu, Y. Liu, G. Yu, D. Shen, Y. Wang, and E. Kan, J. Phys. Chem. Lett. 3, 3330(2012).
    [40] H. L. Zhuang and R. G. Hennig, Chem. Mater. 25, 3232(2013).
    [41] J. Liu, J. Phys. Chem. C 119, 28417(2015).
    [42] J. Cui, S. Liang, X. Wang, and J. M. Zhang, Phys. Chem. Chem. Phys. 17, 23613(2015).
    [43] M. C. Toroker, D. K. Kanan, N. Alidoust, L. Y. Isseroff, P. Liao, and E. A. Carte, Phys. Chem. Chem. Phys. 13, 16644(2011).
    [44] H. L. Zhuang and R. G. Hennig, Phys. Rev. B 88, 115314(2013).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1217) PDF downloads(1042) Cited by()

Proportional views
Related

g-C3N4/SnS2 Heterostructure: a Promising Water Splitting Photocatalyst

doi: 10.1063/1674-0068/30/cjcp1605113

Abstract: Graphite-like carbon nitride (g-C3N4) based heterostrutures has attracted intensive attention due to their prominent photocatalytic performance. Here, we explore the g-C3N4/SnS2 coupling effect on the electronic structures and optical absorption of the proposed g-C3N4/SnS2 heterostructure through performing extensive hybrid functional calculations. The obtained geometric structure, band structures, band edge positions and optical absorptions clearly reveal that the g-C3N4 monolayer weakly couples to SnS2 sheet, and forms a typical van der Waals heterojunction. The g-C3N4/SnS2 heterostructure can effectively harvest visible light, and its valence band maximum and conduction band minimum locate in energetically favorable positions for both water oxidation and reduction reactions. Remarkably, the charge transfer from the g-C3N4 monolayer to SnS2 sheet leads to the built-in interface polarized electric field, which is desirable for the photogenerated carrier separation. The built-in interface polarized electric field as well as the nice band edge alignment implys that the g-C3N4/SnS2 heterostructure is a promising g-C3N4 based water splitting photocatalyst with good performance.

Shao-hua Chen, Jia-jun Wang, Jing Huang, Qun-xiang Li. g-C3N4/SnS2 Heterostructure: a Promising Water Splitting Photocatalyst[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 36-42. doi: 10.1063/1674-0068/30/cjcp1605113
Citation: Shao-hua Chen, Jia-jun Wang, Jing Huang, Qun-xiang Li. g-C3N4/SnS2 Heterostructure: a Promising Water Splitting Photocatalyst[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 36-42. doi: 10.1063/1674-0068/30/cjcp1605113
Reference (44)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return