Yu-kun Wu, A-wei Zhuang, Chun-miao Ye, Jie Zeng, Nan Pan, Xiao-ping Wang. Effect of Screw-Dislocation on Electrical Properties of Spiral-Type Bi2Se3 Nanoplates[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 687-692. doi: 10.1063/1674-0068/29/cjcp1605107
Citation: Yu-kun Wu, A-wei Zhuang, Chun-miao Ye, Jie Zeng, Nan Pan, Xiao-ping Wang. Effect of Screw-Dislocation on Electrical Properties of Spiral-Type Bi2Se3 Nanoplates[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 687-692. doi: 10.1063/1674-0068/29/cjcp1605107

Effect of Screw-Dislocation on Electrical Properties of Spiral-Type Bi2Se3 Nanoplates

doi: 10.1063/1674-0068/29/cjcp1605107
  • Received Date: 2016-05-12
  • Rev Recd Date: 2016-07-25
  • We systematically investigated the electrical properties of spiral-type and smooth Bi2Se3 nanoplates through field effect transistor and conductive atomic force microscopy (CAFM) measurement. It is observed that both nanoplates possess high conductivity and show metallic-like behavior. Compared to the smooth nanoplate, the spiral-type one exhibits the higher carrier concentration and lower mobility. CAFM characterization reveals that the conductance at the screw-dislocation edge is even higher than that on the terrace, implying that the dislocation can supply excess carriers to compensate the low mobility and achieve high conductivity. The unique structure and electrical properties make the spiral-type Bi2Se3 nanoplates a good candidate for catalysts and gas sensors.
  • 加载中
  • [1] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699(2012).
    [2] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Nat. Nanotechnol. 9, 768(2014).
    [3] M. S. Xu, T. Liang, M. M. Shi, and H. Z. Chen, Chem. Rev. 113, 3766(2013).
    [4] Z. H. Sun and H. X. Chang, Acs Nano 8, 4133(2014).
    [5] G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, Acs Nano 9, 11509(2015).
    [6] C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752(2009).
    [7] K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 192(2012).
    [8] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 263(2013).
    [9] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nano 6, 147(2011).
    [10] D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, and M. S. Fuhrer, Nat. Phys. 8, 459(2012).
    [11] J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Phys. Rev. Lett. 105, 176602(2010).
    [12] Y. Sun, H. Cheng, S. Gao, Q. Liu, Z. Sun, C. Xiao, C. Wu, S. Wei, and Y. Xie, J. Am. Chem. Soc. 134, 20294(2012).
    [13] M. Z. Hasan and C. L. Kane, Rev. Modern Phys. 82, 3045(2010).
    [14] J. Moore, Nat. Phys. 5, 378(2009).
    [15] H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. 5, 438(2009).
    [16] C. Kane and J. Moore, Phys. World 32(2011).
    [17] S. A. Morin, M. J. Bierman, J. Tong, and S. Jin, Science 328, 476(2010).
    [18] M. J. Bierman, Y. K. A. Lau, A. V. Kvit, A. L. Schmitt, and S. Jin, Science 320, 1060(2008).
    [19] F. Meng and S. Jin, Nano Lett. 12, 234(2012).
    [20] F. Meng, S. A. Morin, and S. Jin, J. Am. Chem. Soc. 133, 8408(2011).
    [21] S. Jin, M. J. Bierman, and S. A. Morin, J. Phys. Chem. Lett. 1, 1472(2010).
    [22] Y. K. A. Lau, D. J. Chernak, M. J. Bierman, and S. Jin, J. Am. Chem. Soc. 131, 16461(2009).
    [23] S. Hacialioglu, F. Meng, and S. Jin, Chem. Commun. 48, 1174(2012).
    [24] H. Y. Wu, F. Meng, L. S. Li, S. Jin, and G. F. Zheng, Acs Nano 6, 4461(2012).
    [25] F. Meng, M. Estruga, A. Forticaux, S. A. Morin, Q. Wu, Z. Hu, and S. Jin, Acs Nano 7, 11369(2013).
    [26] X. W. Zhang, F. Meng, J. R. Christianson, C. ArroyoTorres, M. A. Lukowski, D. Liang, J. R. Schmidt, and S. Jin, Nano Lett. 14, 3047(2014).
    [27] A. Forticaux, L. Dang, H. Liang, and S. Jin, Nano Lett. 15, 3403(2015).
    [28] S. A. Morin, A. Forticaux, M. J. Bierman, and S. Jin, Nano Lett. 11, 4449(2011).
    [29] C, Huang, R. Shi, A. Amini, Z. Wu, S. Xu, L. Zhang, Wei Cao, J. Feng, H. Song, Y. Shi, N. Wang, and C. Cheng, Sci. Rep. 5, 8226(2015).
    [30] A. Zhuang, J. J. Li, Y. C. Wang, X. Wen, Y. Lin, B. Xiang, X. P. Wang, and J. Zeng, Angew. Chem. Int. Ed. 53, 6425(2014).
    [31] T. F. Rosenbaum, R. F. Milligan, M. A. Paalanen, G. A. Thomas, R. N. Bhatt, and W. Lin, Phys. Rev. B 27, 7509(1983).
    [32] X. H. Chen, Y. S. Wang, Y. Y. Xue, R. L. Meng, Y. Q. Wang, and C. W. Chu, Phys. Rev. B 65, 024502(2001).
    [33] N. W. Ashcroft and N. D. Mermin, Solid State Physics, New York:Holt, Rinehart and Winston, (1976).
    [34] R. J. Macedo, S. E. Harrison, T. S. Dorofeeva, J. S. Harris, and R. A. Kiehl, Nano Lett. 15, 4241(2015).
    [35] D. Hull and D. J. Bacon, Introduction to Dislocations, Oxford:Butterworth-Heinemann, (2001).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(940) PDF downloads(704) Cited by()

Proportional views
Related

Effect of Screw-Dislocation on Electrical Properties of Spiral-Type Bi2Se3 Nanoplates

doi: 10.1063/1674-0068/29/cjcp1605107

Abstract: We systematically investigated the electrical properties of spiral-type and smooth Bi2Se3 nanoplates through field effect transistor and conductive atomic force microscopy (CAFM) measurement. It is observed that both nanoplates possess high conductivity and show metallic-like behavior. Compared to the smooth nanoplate, the spiral-type one exhibits the higher carrier concentration and lower mobility. CAFM characterization reveals that the conductance at the screw-dislocation edge is even higher than that on the terrace, implying that the dislocation can supply excess carriers to compensate the low mobility and achieve high conductivity. The unique structure and electrical properties make the spiral-type Bi2Se3 nanoplates a good candidate for catalysts and gas sensors.

Yu-kun Wu, A-wei Zhuang, Chun-miao Ye, Jie Zeng, Nan Pan, Xiao-ping Wang. Effect of Screw-Dislocation on Electrical Properties of Spiral-Type Bi2Se3 Nanoplates[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 687-692. doi: 10.1063/1674-0068/29/cjcp1605107
Citation: Yu-kun Wu, A-wei Zhuang, Chun-miao Ye, Jie Zeng, Nan Pan, Xiao-ping Wang. Effect of Screw-Dislocation on Electrical Properties of Spiral-Type Bi2Se3 Nanoplates[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 687-692. doi: 10.1063/1674-0068/29/cjcp1605107
Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return