Yu-dan Wang, Zhe Sun, Ya-jun Ren, Yan Zhang, Mao Liang, Song Xue. Correlating Photovoltaic Performance of Dye-Sensitized Solar Cell to the Film Thickness of Titania via Numerical Drift-Diffusion Simulations[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 735-741. doi: 10.1063/1674-0068/29/cjcp1604090
Citation: Yu-dan Wang, Zhe Sun, Ya-jun Ren, Yan Zhang, Mao Liang, Song Xue. Correlating Photovoltaic Performance of Dye-Sensitized Solar Cell to the Film Thickness of Titania via Numerical Drift-Diffusion Simulations[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 735-741. doi: 10.1063/1674-0068/29/cjcp1604090

Correlating Photovoltaic Performance of Dye-Sensitized Solar Cell to the Film Thickness of Titania via Numerical Drift-Diffusion Simulations

doi: 10.1063/1674-0068/29/cjcp1604090
  • Received Date: 2016-04-28
  • Rev Recd Date: 2016-05-06
  • The thickness of TiO2 film is vital to realize the optimization on photovoltaic performance of dye sensitized solar cells (DSSCs). Herein, the process of charge separation in DSSCs was simulated by using a drift-diffusion model. This model allows multiple-trapping diffusion of photo-generated electrons, as well as the back reaction with the electron acceptors in electrolyte, to be mimicked in both steady and non-steady states. Numerical results on current-voltage characteristics allow power conversion efficiency to be maximized by varying the thickness of TiO2 film. Charge collection efficiency is shown to decrease with film thickness, whereas the flux of electron injection benefits from the film thickening. The output of photocurrent is actually impacted by the two factors. Furthermore, recombination rate constant is found to affect the optimized film thickness remarkably. Thicker TiO2 film is suitable to the DSSCs in which back reaction is suppressed sufficiently. On the contrary, the DSSCs with the redox couple showing fast electron interception require thinner film to alleviate the charge loss via recombination. At open circuit, electron density is found to decrease with film thickness, which engenders not only the reduction of photovoltage but also the increase of electron lifetime.
  • 加载中
  • [1] B. C. O'Regan and M. Grätzel, Nature 353, 737(1991).
    [2] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics 19, 84(2011).
    [3] G. Boschloo and A. Hadfeldt, Acc. Chem. Res. 42, 1819(2009).
    [4] M. Grätzel, Acc. Chem. Res. 42, 1788(2009).
    [5] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Chem. Rev. 110, 6595(2010).
    [6] Z. Sun, M. Liang, and J. Chen, Acc. Chem. Res. 48, 1541(2015).
    [7] T. Stergiopoulos and P. Falaras, Adv. Energy Mater. 2, 616(2012).
    [8] M. Wang, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel, Energy Environ. Sci. 5, 9394(2012).
    [9] A. Yella, C. Mai, S. M. Zakeeruddin, S. Chang, C. H. Hsieh, C. Yeh, and M. Grätzel, Angew. Chem. Int. Ed. 53, 2973(2014).
    [10] M. K. Kashif, M. Nippe, N. W. Duffy, C. M. Forsyth, C. J. Chang, J. R. Long, L. Spiccia, and U. Bach, Angew. Chem. 125, 5637(2013).
    [11] Y. Wang, B. Chen, W. Wu, X. Li, W. Zhu, H. Tian, and Y. Xie, Angew. Chem. Int. Ed. 53, 10779(2014).
    [12] X. Sun, Y. Wang, X. Li, H. Ägren, W. Zhu, H. Tian, and Y. Xie, Chem. Commun. 50, 15609(2014).
    [13] Y. Xie, Y. Tang, W. Wu, Y. Wang, J. Liu, X. Li, H. Tian, and W. Zhu, J. Am. Chem. Soc. 137, 14055(2015).
    [14] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, R. Komiya, N. Koide, and L. Y. Han, Jpn. J. Appl. Phys. 45, L638(2006).
    [15] H. Tian and L. Sun, J. Mater. Chem. 21, 10592(2011).
    [16] J. G. Rowley, B. H. Farnum, S. Ardo, and G. J. Meyer, J. Phys. Chem. Lett. 1, 3132(2010).
    [17] M. Griffith, K. Sunahara, P. Wagner, K. Wagner, G. Wallace, D. Officer, A. Furube, R. Katoh, S. Mori, and A. Mozer, Chem. Commun. 48, 4145(2012).
    [18] A. Yella, H. Lee, H. Tsao, C. Yi, A. Chandiran, M. Nazeeruddin, E. Diau, C. Yeh, S. Zakeeruddin, and M. Grätzel, Science 334, 629(2011).
    [19] M. Liang and J. Chen, Chem. Soc. Rev. 42, 3453(2013).
    [20] S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, and A. Hagfeldt, J. Am. Chem. Soc. 132, 16714(2010).
    [21] J. H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J. E. Moser, C. Yi, M. K. Nazeeruddin, and M. Grätzel, Nat. Commun. 3, 631(2012).
    [22] T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. Van Ryswykac, and J. T. Hupp, Energy Environ. Sci. 1, 66(2008).
    [23] L. M. Peter, J. Phys. Chem. Lett. 2, 1861(2011).
    [24] P. R. F. Barnes, K. Miettunen, X. Li, A. Y. Anderson, T. Bessho, M. Gratzel, and B. C. O'Regan, Adv. Mater. 25, 1881(2013).
    [25] F. Fabregat-Santiago, G. Garcia-Belmonte, I. MoraSero, and J. Bisquert, Phys. Chem. Chem. Phys. 13, 9083(2011).
    [26] H. Wang, Z. Sun, Y. Zhang, Y. Zhang, M. Liang, D. Jia, and S. Xue, J. Phys. Chem. C 118, 60(2014).
    [27] K. Zhu, S. Jang, and A. J. Frank, J. Phys. Chem. Lett. 2, 1070(2011).
    [28] P. R. F. Barnes, A. Y. Anderson, J. R. Durrant, and B. C. O'Regan, Phys. Chem. Chem. Phys. 13, 5798(2011).
    [29] P. Salvador, M. Hidalgo, A. Zaban, and J. Bisquert, J. Phys. Chem. B 109, 15915(2005).
    [30] J. Bisquert and I. Mora-Seró, J. Phys. Chem. Lett. 1, 450, (2010).
    [31] J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, and S. Giménez, J. Phys. Chem. C 113, 17278(2009).
    [32] R. Katoh, A. Furube, A. V. Barzykin, H. Arakawa, and M. Tachiya, Coord. Chem. Rev. 248, 1195(2004).
    [33] J. W. Ondersma and T. W. Hamann, J. Am. Chem. Soc. 133, 8264(2011).
    [34] J. Idígoras, L. Pellejà, E. Palomares, and J. A. Anta, J. Phys. Chem. C 118, 3878(2014).
    [35] T. Daeneke, T. Kwon, A. B. Holmes, N. W. Duffy, U. Bach, and L. Spiccia, Nat. Chem. 3, 213(2011).
    [36] T. Daeneke, A. J. Mozer, Y. Uemura, S. Makuta, M. Fekete, Y. Tachibana, N. Koumura, U. Bach, and L. Spiccia, J. Am. Chem. Soc. 134, 16925(2012).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(875) PDF downloads(543) Cited by()

Proportional views
Related

Correlating Photovoltaic Performance of Dye-Sensitized Solar Cell to the Film Thickness of Titania via Numerical Drift-Diffusion Simulations

doi: 10.1063/1674-0068/29/cjcp1604090

Abstract: The thickness of TiO2 film is vital to realize the optimization on photovoltaic performance of dye sensitized solar cells (DSSCs). Herein, the process of charge separation in DSSCs was simulated by using a drift-diffusion model. This model allows multiple-trapping diffusion of photo-generated electrons, as well as the back reaction with the electron acceptors in electrolyte, to be mimicked in both steady and non-steady states. Numerical results on current-voltage characteristics allow power conversion efficiency to be maximized by varying the thickness of TiO2 film. Charge collection efficiency is shown to decrease with film thickness, whereas the flux of electron injection benefits from the film thickening. The output of photocurrent is actually impacted by the two factors. Furthermore, recombination rate constant is found to affect the optimized film thickness remarkably. Thicker TiO2 film is suitable to the DSSCs in which back reaction is suppressed sufficiently. On the contrary, the DSSCs with the redox couple showing fast electron interception require thinner film to alleviate the charge loss via recombination. At open circuit, electron density is found to decrease with film thickness, which engenders not only the reduction of photovoltage but also the increase of electron lifetime.

Yu-dan Wang, Zhe Sun, Ya-jun Ren, Yan Zhang, Mao Liang, Song Xue. Correlating Photovoltaic Performance of Dye-Sensitized Solar Cell to the Film Thickness of Titania via Numerical Drift-Diffusion Simulations[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 735-741. doi: 10.1063/1674-0068/29/cjcp1604090
Citation: Yu-dan Wang, Zhe Sun, Ya-jun Ren, Yan Zhang, Mao Liang, Song Xue. Correlating Photovoltaic Performance of Dye-Sensitized Solar Cell to the Film Thickness of Titania via Numerical Drift-Diffusion Simulations[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 735-741. doi: 10.1063/1674-0068/29/cjcp1604090
Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return