Yu-jia Huo, Fan-fan Yao, Yun-sheng Ma. Catalytic Performance of Graphite Oxide Supported Au Nanoparticles in Aerobic Oxidation of Benzyl Alcohol: Support Effect[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 90-96. doi: 10.1063/1674-0068/30/cjcp1604088
Citation: Yu-jia Huo, Fan-fan Yao, Yun-sheng Ma. Catalytic Performance of Graphite Oxide Supported Au Nanoparticles in Aerobic Oxidation of Benzyl Alcohol: Support Effect[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 90-96. doi: 10.1063/1674-0068/30/cjcp1604088

Catalytic Performance of Graphite Oxide Supported Au Nanoparticles in Aerobic Oxidation of Benzyl Alcohol: Support Effect

doi: 10.1063/1674-0068/30/cjcp1604088
  • Received Date: 2016-04-25
  • Rev Recd Date: 2016-05-11
  • Various Au/GO catalysts were prepared by depositing Au nanoparticles on thermally- and chemically-treated graphite oxide (GO) supports using a sol-immobilization method. The surface chemistry and structure of GO supports were characterized by a series of analytical techniques including X-ray photoelectron spectroscopy, temperature-programmed desorption and Raman spectroscopy. The results show that thermal and chemical treatments have large influence on the presence of surface oxygenated groups and the crystalline structure of GO supports. A strong support effect was observed on the catalytic activity of Au/GO catalysts in the liquid phase aerobic oxidation of benzyl alcohol. Compared to the amount and the type of surface oxygen functional groups, the ordered structure of GO supports may play a more important role in determining the catalytic performance of Au/GO catalysts.
  • 加载中
  • [1] R. A. Sheldon, I. W. C. E. Arends, G. J. T. Brink, and A. Dijksman, Acc. Chem. Res. 35, 774(2002).
    [2] T. Mallat and A. Baiker, Chem. Rev. 104, 3037(2004).
    [3] C. D. Pina, E. Falletta, and M. Rossi, Chem. Soc. Rev. 41, 350(2012).
    [4] L. Prati and M. Rossi, J. Catal. 176, 552(1998).
    [5] F. Rodríguez-reinoso, Carbon 36, 159(1998).
    [6] J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, and J. J. M. Órfão, Carbon 37, 1379(1999).
    [7] M. Besson and P. Gallezot, Catal. Today 57, 127(2000).
    [8] C. D. Pina, E. Falletta, L. Prati, and M. Rossi, Chem. Soc. Rev. 37, 2077(2008).
    [9] C. Bianchi, F. Porta, L. Prati, and M. Rossi, Top. Catal. 13, 231(2000).
    [10] S. Meenakshisundaram, E. Nowicka, P. J. Miedziak, G. L. Brett, R. L. Jenkins, N. Dimitratos, S. H. Taylor, D. W. Knight, D. Bethell, and G. J. Hutchings, Faraday Discuss. 145, 341(2010).
    [11] W. Fang, J. Chen, Q. Zhang, W. Deng, and Y. Wang, Chem. Eur. J 17, 1247(2011).
    [12] J. L. Figueiredo and M. F. R. Pereira, Catal. Today 150, 2(2010).
    [13] E. G. Rodrigues, M. F. R. Pereira, X. Chen, J. J. Delgado, and J. J. M. Órfão, J. Catal. 281, 119(2011).
    [14] E. G. Rodrigues, J. J. Delgado, X. Chen, M. F. R. Pereira, and J. J. M. Órfão, Ind. Eng. Chem. Res. 51, 15884(2012).
    [15] J. Zhu, S. A. C. Carabineiro, D. Shan, J. L. Faria, Y. Zhu, and J. L. Figueiredo, J. Catal. 274, 207(2010).
    [16] S. Gil, L. Muñoz, L. Sánchez-Silva, A. Romero, and J. L. Valverde, Chem. Eng. J. 172, 418(2011).
    [17] D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228(2010).
    [18] X. Yu, Y. Huo, J. Yang, S. Chang, Y. Ma, and W. Huang, Appl. Surf. Sci. 280, 450(2013).
    [19] N. M. Julkapli and S. Bagheri, Int. J. Hydrogen Energy 40, 948(2015).
    [20] S. Rostamnia, E. Doustkhah, Z. Karimi, S. Amini, and R. Luque, ChemCatChem 7, 1678(2015).
    [21] B. Zahed and H. Hosseini-Monfared, Appl. Surf. Sci. 328, 536(2015).
    [22] W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339(1958).
    [23] C. Bao, L. Song, W. Xing, B. Yuan, C. A. Wilkie, J. Huang, Y. Guo, and Y. Hu, J. Mater. Chem. 22, 6088(2012).
    [24] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, and Y. H. Lee, Adv. Func. Mater. 19, 1987(2009).
    [25] X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang, and H. J. Dai, Nat. Nanotechnol. 3, 538(2008).
    [26] J. Pritchard, L. Kesavan, M. Piccinini, Q. He, R. Tiruvalam, N. Dimitratos, J. A. Lopez-Sanchez, A. F. Carley, J. K. Edwards, C. J. Kiely, and G. J. Hutchings, Langmuir 26, 16568(2010).
    [27] G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, and R. Mülhaupt, J. Am. Chem. Soc. 131, 8262(2009).
    [28] R. Nie, J. Wang, L. Wang, Y. Qin, P. Chen, and Z. Hou, Carbon 50, 586(2012).
    [29] M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay, Chem. Mater. 19, 4396(2007).
    [30] J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, and J. J. M. Órfão, Ind. Eng. Chem. Res. 46, 4110(2007).
    [31] P. Brender, R. Gadiou, J. C. Rietsch, P. Fioux, J. Dentzer, A. Ponche, and C. Vix-Guterl, Anal. Chem. 84, 2147(2012).
    [32] X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, and F. Zhang, Adv. Mater. 20, 4490(2008).
    [33] W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, Nat. Chem. 1, 403(2009).
    [34] A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095(2000).
    [35] J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, Langmuir 25, 5957(2009).
    [36] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558(2007).
    [37] S. Laref, F. Delbecq, and D. Loffreda, J. Catal. 265, 35(2009).
    [38] B. N. Zope, D. D. Hibbitts, M. Neurock, and R. J. Davis, Science 330, 74(2010).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1029) PDF downloads(534) Cited by()

Proportional views
Related

Catalytic Performance of Graphite Oxide Supported Au Nanoparticles in Aerobic Oxidation of Benzyl Alcohol: Support Effect

doi: 10.1063/1674-0068/30/cjcp1604088

Abstract: Various Au/GO catalysts were prepared by depositing Au nanoparticles on thermally- and chemically-treated graphite oxide (GO) supports using a sol-immobilization method. The surface chemistry and structure of GO supports were characterized by a series of analytical techniques including X-ray photoelectron spectroscopy, temperature-programmed desorption and Raman spectroscopy. The results show that thermal and chemical treatments have large influence on the presence of surface oxygenated groups and the crystalline structure of GO supports. A strong support effect was observed on the catalytic activity of Au/GO catalysts in the liquid phase aerobic oxidation of benzyl alcohol. Compared to the amount and the type of surface oxygen functional groups, the ordered structure of GO supports may play a more important role in determining the catalytic performance of Au/GO catalysts.

Yu-jia Huo, Fan-fan Yao, Yun-sheng Ma. Catalytic Performance of Graphite Oxide Supported Au Nanoparticles in Aerobic Oxidation of Benzyl Alcohol: Support Effect[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 90-96. doi: 10.1063/1674-0068/30/cjcp1604088
Citation: Yu-jia Huo, Fan-fan Yao, Yun-sheng Ma. Catalytic Performance of Graphite Oxide Supported Au Nanoparticles in Aerobic Oxidation of Benzyl Alcohol: Support Effect[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 90-96. doi: 10.1063/1674-0068/30/cjcp1604088
Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return