Wei Xie, Li-li Ji, Ji-long Zhou, Hai-bin Pan, Jun-fa Zhu, Yi Zhang, Song Sun, Jun Bao, Chen Gao. Effect of Mn Promoter on Structure and Performance of K-Co-Mo Catalyst for Synthesis of Higher Alcohols from CO Hydrogenation[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 671-680. doi: 10.1063/1674-0068/29/cjcp1604070
Citation: Wei Xie, Li-li Ji, Ji-long Zhou, Hai-bin Pan, Jun-fa Zhu, Yi Zhang, Song Sun, Jun Bao, Chen Gao. Effect of Mn Promoter on Structure and Performance of K-Co-Mo Catalyst for Synthesis of Higher Alcohols from CO Hydrogenation[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 671-680. doi: 10.1063/1674-0068/29/cjcp1604070

Effect of Mn Promoter on Structure and Performance of K-Co-Mo Catalyst for Synthesis of Higher Alcohols from CO Hydrogenation

doi: 10.1063/1674-0068/29/cjcp1604070
  • Received Date: 2016-04-08
  • Rev Recd Date: 2016-05-10
  • A series of Mn-doped K-Co-Mo catalysts were prepared by a sol-gel method. The catalyst structure was well characterized by X-ray diffraction, N2 physisorption, NH3 temperatureprogrammed adsorption, in situ diffuse reflectance infrared Fourier transform spectroscopy, and X-ray absorption fine structure spectroscopy. The catalytic performance for higher alcohol synthesis from syngas was measured. It was found that the Mn-doped catalysts exhibited a much higher activity as compared to the unpromoted catalyst, and in particular the C2+ alcohol selectivity increased significantly. The distribution of alcohol products deviated from the Anderson-Schulz-Flory law. The portion of methanol in total alcohol was suppressed remarkably and the ethanol became the predominant product. Characterization results indicated that the incorporation of Mn enhanced the interaction of Co and Mo and thus led to the formation of Co-Mo-O species, which was regarded as the active site for the alcohol synthesis. Secondly, the presence of Mn reduced the amount of strong acid sites significantly and meanwhile promoted the formation of weak acid sites, which had a positive effect on the synthesis of alcohol. Furthermore, it was found that the incorporation of Mn can enhance the adsorption of linear- and bridge-type CO significantly, which contributed to the formation of alcohol and growth of carbon chain and thus increased the selectivity to C2+OH.
  • 加载中
  • [1] P. Forzatti, E. Tronconi, and I. Pasquon, Catal. Rev. Sci. Eng. 33, 109(1991).
    [2] N. D. Subramanian, G. Balaji, C. S. S. R. Kumar, and J. J. Spivey, Catal. Today 147, 100(2009).
    [3] V. R. Surisetty, A. K. Dalai, and J. Kozinski, Appl. Catal. A 404, 1(2011).
    [4] R. G. Herman, Catal. Today 55, 233(2000).
    [5] J. M. Christensen, L. D. L. Duchstein, J. B. Wagner, P. A. Jensen, Burcin. Temel, and A. D. Jensen, Ind. Eng. Chem. Res. 51, 4146(2012).
    [6] J. Spivey and A. Egbebi, Chem. Soc. Rev. 36, 1514(2007).
    [7] V. Subramani and S. K. Gangwal, Energy Fuels 22, 814(2008).
    [8] N. D. Subramanian, J. Gao, X. Mo, J. G. Goodwin, Jr. W. Torres, and J. J. Spivey, J. Catal. 272, 204(2010).
    [9] E. Heracleous, E. T. Liakakou, A. A. Lappas, and A. A. Lemonidou, Appl. Catal. A 455, 145(2013).
    [10] M. R. Morrill, N. T. Thao, H. Shou, R. J. Davis, D. G. Barton, D. Ferrari, P. K. Agrawal, and C. W. Jones, ACS Catal. 3, 1665(2013).
    [11] G. Z. Bian, Y. L. Fu, and M. Yamada, Appl. Catal. A 144, 79(1996).
    [12] S. Zaman and K. J. Smith, Catal. Rev. Sci. Eng. 54, 41(2012).
    [13] M. M. Lv, W. Xie, S. Sun, G. M. Gai, L. R. Zheng, S. Q. Chu, C. Gao, and J. Bao, Catal. Sci. Technol. 5, 2925(2015).
    [14] Y. Yang, Y. D. Wang, S. Liu, Q. Y. Song, Z. K. Xie, and Z. Gao, Catal. Lett. 127, 448(2009).
    [15] M. Jiang, G. Z. Bian, and Y. L. Fu, J. Catal. 146, 144(1994).
    [16] M. L. Xiang, D. B. Li, H. C. Xiao, J. Zhang, H. J. Qi, W. L. Li, B. Zhong, and Y. H. Sun, Fuel 87, 599(2008).
    [17] E. T. Liakakou, E. Heracleous, K. S. Triantafyllidis, and A. A. Lemonidou, Appl. Catal. B 165, 296(2015).
    [18] Z. Liu, X. Li, M. R. Close. E. L. Kugler, J. L. Petersen, and D. B. Dadyburjor, Ind. Eng. Chem. Res. 36, 3085(1997).
    [19] J. S. Lee, S. Kim, K. H. Lee, I. S. Nam, J. S. Chung, Y. G. Kim, and H. C. Woo, Appl. Catal. A 110, 11(1994).
    [20] H. C. Woo, I. S. Nam, J. S. Lee, J. S. Chung, and Y. G. Kim, J. Catal. 142, 672(1993).
    [21] V. P. Santos, B. V. D. Linden, A. Chojecki, G. Budroni, S. Corthals, H. Shibata, G. R. Meima, F. Kapteijin, M. Makkee, and J. Gascon, ACS Catal. 3, 1634(2013).
    [22] G. Z. Bian, L. Fan, Y. L. Fu, and K. Fujimoto, Ind. Eng. Chem. Res. 37, 1736(1998).
    [23] X. M. Shi, X. Z. Yang, F. H. Bai, M. H. Nao, and H. Q. Su, Chem. Ind. Eng. Prog. 29, 2291(2010).
    [24] K. H. Yin, H. Shou, D. Ferrari, C. W. Jones, and R. J. Davis, Top. Catal. 56, 1740(2013).
    [25] D. B. Li, C. Yang, H. J. Qi, H. R. Zhang, W. H. Li, Y. H. Sun, and B. Zhong, Catal. Commun. 5, 605(2004).
    [26] F. Morales, D. Grandjean, F. M. F. de Groot, O. Stephan, and B. M. Weckhuysen, Phys. Chem. Chem. Phys. 7, 568(2005).
    [27] A. Dince, M. Aigner, M. Ubrich, G. R. Johnson, and A. T. Bell, J. Catal. 288, 104(2012).
    [28] G. R. Johnson, S. Werner, and A. T. Bell, ACS Catal. 5, 5888(2015).
    [29] H. J. Qi, D. B. Li, C. Yang, Y. G. Ma, W. H. Li, Y. H. Sun, and B. Zhong, Catal. Commun. 4, 339(2003).
    [30] M. Y. Ding, M. H. Qiu, J. G. Liu, Y. P. Li, T. J. Wang, L. L. Ma, and C. Z. Wu, Fuel 109, 21(2013).
    [31] R. G. Zhang, G. R. Wang, and B. J. Wang, J. Catal. 305, 238(2013).
    [32] M. Ojeda, M. L. Granados, S. Rojas, P. Terreros, F. J. Garcia-Garcia, and J. L. G. Fierro, Appl. Catal. A 261, 47(2004).
    [33] B. Ravel and M. Newville, J. Synchrotron. Radiat. 12, 537(2005).
    [34] T. Toyoda, T. Minami, and E. W. Qian, Energy Fuels 27, 3769(2013).
    [35] S. S. R. Putluru, L. Schill, A. D. Jensen, B. Siret, F. Tabaries, and R. Fehrmann, Appl. Catal. B 165, 628(2015).
    [36] D. C. Song, J. J. Li, and Q. Cai, J. Phys. Chem. C 111, 18970(2007).
    [37] G. Prieto, A. Martinez, P. Concepcion, and R. MorenoTost, J. Catal. 266, 129(2009).
    [38] N. Kumar, K. Jothimurugesan, G. G. Stanley, V. Schwartz, and J. J. Spivey, J. Phys. Chem. C 115, 990(2011).
    [39] F. Morales, E. de Smit, F. M. F. de Groot, T. Visser, and B. M. Weckhuysen, J. Catal. 246, 91(2007).
    [40] S. Gaur, H. Y. Wu, G. G. Stanley, K. More, C. S. S. R. Kumar, and J. J. Spivey, Catal. Today 208, 72(2013).
    [41] R. G. Leliveld, A. J. van Dillen, J. W. Geus, and D. C. Koningsberger, J. Catal. 165, 184(1997).
    [42] D. O. Scanion, G. W. Watson, D. J. Payne, G. R. Atkinson, R. G. Egdell, and D. S. L. Law, J. Phys. Chem. C 114, 4636(2010).
    [43] J. M. Christensen, P. M. Mortensen, R. Trane, P. A. Jensen, and A. D. Jensen, Appl. Catal. A 366, 29(2009).
    [44] M. L. Xiang, D. B. Li, W. H. Li, B. Zhong, and Y. H. Sun, Catal. Commun. 8, 503(2007).
    [45] G. M. Wu, J. L. Zhou, M. M. Lv, W. Xie, S. Sun, C. Gao, W. D. Wang, and J. Bao, Chin. J. Chem. Phys. 28, 604(2015).
    [46] Y. Yang, Y. D. Wang, S. Liu, Q. Y. Song, Z. K. Xie, and Z. Gao, Catal. Lett. 127, 448(2009).
    [47] M. Nagai, A. Md. Zahidul, and K. Matsuda, Appl. Catal. A 313, 137(2006).
    [48] D. B. Li, C. Yang, W. H. Li, Y. H. Sun, and B. Zhong, Top. Catal. 32, 233(2005).
    [49] M. Y. Sun, A. E. Nelson, and J. Adjaye, J. Catal. 226, 32(2004).
    [50] Y. Zhang, Y. Liu, G. H. Yang, S. L. Sun, and N. Tsubaki, Appl. Catal. A 321, 79(2007).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1035) PDF downloads(926) Cited by()

Proportional views
Related

Effect of Mn Promoter on Structure and Performance of K-Co-Mo Catalyst for Synthesis of Higher Alcohols from CO Hydrogenation

doi: 10.1063/1674-0068/29/cjcp1604070

Abstract: A series of Mn-doped K-Co-Mo catalysts were prepared by a sol-gel method. The catalyst structure was well characterized by X-ray diffraction, N2 physisorption, NH3 temperatureprogrammed adsorption, in situ diffuse reflectance infrared Fourier transform spectroscopy, and X-ray absorption fine structure spectroscopy. The catalytic performance for higher alcohol synthesis from syngas was measured. It was found that the Mn-doped catalysts exhibited a much higher activity as compared to the unpromoted catalyst, and in particular the C2+ alcohol selectivity increased significantly. The distribution of alcohol products deviated from the Anderson-Schulz-Flory law. The portion of methanol in total alcohol was suppressed remarkably and the ethanol became the predominant product. Characterization results indicated that the incorporation of Mn enhanced the interaction of Co and Mo and thus led to the formation of Co-Mo-O species, which was regarded as the active site for the alcohol synthesis. Secondly, the presence of Mn reduced the amount of strong acid sites significantly and meanwhile promoted the formation of weak acid sites, which had a positive effect on the synthesis of alcohol. Furthermore, it was found that the incorporation of Mn can enhance the adsorption of linear- and bridge-type CO significantly, which contributed to the formation of alcohol and growth of carbon chain and thus increased the selectivity to C2+OH.

Wei Xie, Li-li Ji, Ji-long Zhou, Hai-bin Pan, Jun-fa Zhu, Yi Zhang, Song Sun, Jun Bao, Chen Gao. Effect of Mn Promoter on Structure and Performance of K-Co-Mo Catalyst for Synthesis of Higher Alcohols from CO Hydrogenation[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 671-680. doi: 10.1063/1674-0068/29/cjcp1604070
Citation: Wei Xie, Li-li Ji, Ji-long Zhou, Hai-bin Pan, Jun-fa Zhu, Yi Zhang, Song Sun, Jun Bao, Chen Gao. Effect of Mn Promoter on Structure and Performance of K-Co-Mo Catalyst for Synthesis of Higher Alcohols from CO Hydrogenation[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 671-680. doi: 10.1063/1674-0068/29/cjcp1604070
Reference (50)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return