Chun-lei Wang, Jun-ling Lu. Sub-nanometer-thick Al2O3 Overcoat Remarkably Enhancing Thermal Stability of Supported Gold Catalysts[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 571-577. doi: 10.1063/1674-0068/29/cjcp1604065
Citation: Chun-lei Wang, Jun-ling Lu. Sub-nanometer-thick Al2O3 Overcoat Remarkably Enhancing Thermal Stability of Supported Gold Catalysts[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 571-577. doi: 10.1063/1674-0068/29/cjcp1604065

Sub-nanometer-thick Al2O3 Overcoat Remarkably Enhancing Thermal Stability of Supported Gold Catalysts

doi: 10.1063/1674-0068/29/cjcp1604065
  • Received Date: 2016-04-02
  • Rev Recd Date: 2016-05-18
  • Supported gold nanoparticle catalysts show extraordinarily high activity in many reactions. While the relative poor thermal stability of Au nanoparticles against sintering at elevated temperatures severely limits their practical applications. Here atomic layer deposition (ALD) of TiO2 and Al2O3 was performed to deposit an Au/TiO2 catalyst with precise thickness con-trol, and the thermal stability was investigated. We surprisingly found that sub-nanometer-thick Al2O3 overcoat can su ciently inhibit the aggregation of Au particles up to 600 C in oxygen. On the other hand, the enhancement of Au nanoparticle stability by TiO2 overcoat is very limited. Di use reffectance infrared Fourier transform spectroscopy (DRIFTS) of CO chemisorption and X-ray photoelectron spectroscopy measurements both con rmed the ALD overcoat on Au particles surface and suggested that the presence of TiO2 and Al2O3 ALD overcoat on Au nanoparticles does not considerably change the electronic properties of Au nanoparticles. The catalytic activities of the Al2O3 overcoated Au/TiO2 catalysts in CO oxidation increased as increasing calcination temperature, which suggests that the embed-ded Au nanoparticles become more accessible for catalytic function after high temperature treatment, consistent with our DRIFTS CO chemisorption results.
  • 加载中
  • [1] M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. 16, 405 (1987).
    [2] I. X. Green, W. J. Tang, M. Neurock, and J. T. Yates, Science 333, 736 (2011).
    [3] X. Liu, L. He, Y. M. Liu, and Y. Cao, Acc. Chem. Res. 47, 793 (2014).
    [4] D. Andreeva, V. Idakiev, T. Tabakova, A. Andreev, and R. Giovanoli, Appl. Catal. A 134, 275 (1996).
    [5] P. Landon, P. J. Collier, A. J. Papworth, C. J. Kiely, and G. J. Hutchings, Chem. Commun. 2058 (2002).
    [6] M. M. Schubert, V. Plzak, J. Garche, and R. J. Behm, Catal. Lett. 76, 143 (2001).
    [7] A. Sinha, S. Seelan, S. Tsubota, and M. Haruta, Top. Catal. 29, 95 (2004).
    [8] M. Haruta, Faraday Discuss. 152, 11 (2011).
    [9] G. J. Hutchings, M. Brust, and H. Schmidbaur, Chem. Soc. Rev. 37, 1759 (2008).
    [10] G. Pattrick, E. van der Lingen, C. W. Corti, R. J. Holl-iday, and D. T. Thompson, Top. Catal. 30, 273 (2004).
    [11] W. Yan, S. M. Mahurin, S. H. Overbury, and S. Dai, Top. Catal. 39, 199 (2006).
    [12] T. W. Hansen, A. T. Delariva, S. R. Challa, and A. K. Datye, Acc. Chem. Res. 46, 1720 (2013).
    [13] W. F. Yan, S. M. Mahurin, Z. W. Pan, S. H. Overbury, and S. Dai, J. Am. Chem. Soc. 127, 10480 (2005).
    [14] M. Valden, X. Lai, and D. W. Goodman, Science 281, 1647 (1998).
    [15] J. L. Lu, H. J. Gao, S. Shaikhutdinov, and H. J. Freund, Catal. Lett. 114, 8 (2007).
    [16] A. Luengnaruemitchai, S. Osuwan, and E. Gulari, Catal. Commun. 4, 215 (2003).
    [17] B. Min, W. Wallace, and D. Goodman, J. Phys. Chem. B 108, 14609 (2004).
    [18] C. M. Wang, K. N. Fan, and Z. P. Liu, J. Phys. Chem. C 111, 13539 (2007).
    [19] V. Rodriguez-Gonzalez, R. Zanella, L. A. Calzada, and R. Gomez, J. Phys. Chem. C 113, 8911 (2009).
    [20] K. Zhao, B. Qiao, J. Wang, Y. Zhang, and T. Zhang, Chem. Commun. 47, 1779 (2011).
    [21] S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. D. Yang, and G. A. Somorjai, Nat. Mater. 8, 126 (2009).
    [22] M. Cargnello, J. J. D. Jaen, J. C. H. Garrido, K. Bakhmutsky, T. Montini, J. J. C. Gamez, R. J. Gorte, and P. Fornasiero, Science 337, 713 (2012).
    [23] A. J. Forman, J. N. Park, W. Tang, Y. S. Hu, G. D. Stucky, and E. W. McFarland, ChemCatChem 2, 1318 (2010).
    [24] Q. Zhang, I. Lee, J. B. Joo, F. Zaera, and Y. D. Yin, Acc. Chem. Res. 46, 1816 (2013).
    [25] M. Seipenbusch and A. Binder, J. Phys. Chem. C 113, 20606 (2009).
    [26] H. G. Zhu, Z. Ma, S. H. Overbury, and S. Dai, Catal. Lett. 116, 128 (2007).
    [27] J. L. Lu, J. W. Elam, and P. C. Stair, Acc. Chem. Res. 46, 1806 (2013).
    [28] H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao, C. L. Wang, J. J. Li, S.Q. Wei, and J. L. Lu, J. Am. Chem. Soc. 137, 10484 (2015).
    [29] J. L. Lu, B. S. Fu, M. C. Kung, G. M. Xiao, J. W. Elam, H. H. Kung, and P. C. Stair, Science 335, 1205 (2012).
    [30] H. Feng, J. Lu, P. C. Stair, and J. W. Elam, Catal. Lett. 141, 512 (2011).
    [31] X. Liang, J. Li, M. Yu, C. N. McMurray, J. L. Falconer, and A. W. Weimer, Acs Catal. 1, 1162 (2011).
    [32] Z. Ma, S. Brown, J. Y. Howe, S. H. Overbury, and S. Dai, J. Phys. Chem. C 112, 9448 (2008).
    [33] M. M. Biener, J. Biener, A. Wichmann, A. Wittstock, T. F. Baumann, M. Baumer, and A. V. Hamza, Nano Lett. 11, 3085 (2011).
    [34] C. L. Wang, H. W. Wang, Q. Yao, H. Yan, J. J. Li, and J. L. Lu, J. Phys. Chem. C 120, 478 (2016).
    [35] R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, J. Phys. Chem. B 106, 7634 (2002).
    [36] L. Delannoy, R. L. Chantry, S. Casale, Z. Y. Li, Y. Borensztein, and C. Louis, Phys. Chem. Chem. Phys. 15, 3473 (2013).
    [37] J. L. Lu, B. Liu, J. P. Greeley, Z. X. Feng, J. A. Libera, Y. Lei, M. J. Bedzyk, P. C. Stair, and J. W. Elam, Chem. Mater. 24, 2047 (2012).
    [38] M. Haruta, J. New. Mat. Electr. Sys. 7, 163 (2004).
    [39] H. Yi, H. Y. Du, Y. L. Hu, H. Yan, H. L. Jiang, and J. L. Lu, Acs Catal. 5, 2735 (2015).
    [40] F. Menegazzo, M. Manzoli, A. Chiorino, F. Boccuzzi, T. Tabakova, M. Signoretto, F. Pinna, and N. Pernicone, J. Catal. 237, 431 (2006).
    [41] J. D. Grunwaldt, M. Maciejewski, O. S. Becker, P. Fab-rizioli, and A. Baiker, J. Catal. 186, 458 (1999).
    [42] K. Qian, L. F. Luo, H. Z. Bao, Q. Hua, Z. Q. Jiang, and W. X. Huang, Catal. Sci. Technol. 3, 679 (2013).
    [43] M. Boronat, P. Concepcion, and A. Corma, J. Phys. Chem. C 113, 16772 (2009).
    [44] B. J. O'Neill, D. H. Jackson, A. J. Crisci, C. A. Far-berow, F. Shi, A. C. Alba-Rubio, J. Lu, P. J. Dietrich, X. Gu, and C. L. Marshall, Angew. Chem. Int. Ed. 52, 13808 (2013).
    [45] M. M. Gao, C. K. N. Peh, Y. L. Pan, Q. H. Xu, and G. W. Ho, Nanoscale 6, 12655 (2014).
    [46] M. M. Ye, H. H. Zhou, T. Q. Zhang, Y. P. Zhang, and Y. Shao, Chem. Eng. J. 226, 209 (2013).
    [47] M. Haruta, Gold Bull. 37, 27 (2004).
    [48] M. Haruta, Chem. Rec. 3, 75 (2003).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(606) PDF downloads(389) Cited by()

Proportional views
Related

Sub-nanometer-thick Al2O3 Overcoat Remarkably Enhancing Thermal Stability of Supported Gold Catalysts

doi: 10.1063/1674-0068/29/cjcp1604065

Abstract: Supported gold nanoparticle catalysts show extraordinarily high activity in many reactions. While the relative poor thermal stability of Au nanoparticles against sintering at elevated temperatures severely limits their practical applications. Here atomic layer deposition (ALD) of TiO2 and Al2O3 was performed to deposit an Au/TiO2 catalyst with precise thickness con-trol, and the thermal stability was investigated. We surprisingly found that sub-nanometer-thick Al2O3 overcoat can su ciently inhibit the aggregation of Au particles up to 600 C in oxygen. On the other hand, the enhancement of Au nanoparticle stability by TiO2 overcoat is very limited. Di use reffectance infrared Fourier transform spectroscopy (DRIFTS) of CO chemisorption and X-ray photoelectron spectroscopy measurements both con rmed the ALD overcoat on Au particles surface and suggested that the presence of TiO2 and Al2O3 ALD overcoat on Au nanoparticles does not considerably change the electronic properties of Au nanoparticles. The catalytic activities of the Al2O3 overcoated Au/TiO2 catalysts in CO oxidation increased as increasing calcination temperature, which suggests that the embed-ded Au nanoparticles become more accessible for catalytic function after high temperature treatment, consistent with our DRIFTS CO chemisorption results.

Chun-lei Wang, Jun-ling Lu. Sub-nanometer-thick Al2O3 Overcoat Remarkably Enhancing Thermal Stability of Supported Gold Catalysts[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 571-577. doi: 10.1063/1674-0068/29/cjcp1604065
Citation: Chun-lei Wang, Jun-ling Lu. Sub-nanometer-thick Al2O3 Overcoat Remarkably Enhancing Thermal Stability of Supported Gold Catalysts[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 571-577. doi: 10.1063/1674-0068/29/cjcp1604065
Reference (48)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return