Hao-zhi Huang, Yu-hao Chen, Wan-cheng Yu, Kai-fu Luo. Superselective Adsorption of Multivalent Polymer Chains to a Surface with Receptors[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 564-570. doi: 10.1063/1674-0068/29/cjcp1603060
Citation: Hao-zhi Huang, Yu-hao Chen, Wan-cheng Yu, Kai-fu Luo. Superselective Adsorption of Multivalent Polymer Chains to a Surface with Receptors[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 564-570. doi: 10.1063/1674-0068/29/cjcp1603060

Superselective Adsorption of Multivalent Polymer Chains to a Surface with Receptors

doi: 10.1063/1674-0068/29/cjcp1603060
  • Received Date: 2016-03-29
  • Rev Recd Date: 2016-05-17
  • Multivalent polymer chains exhibit excellent prospect in biomedical applications by serving as therapeutic agents. Using three-dimensional (3D) Langevin dynamics simulations, we investigate adsorption behaviors of multivalent polymer chains to a surface with receptors. Multivalent polymer chains display superselective adsorption. Furthermore, the range of density of surface receptors at which a multivalent polymer chain displays a superselective behavior, narrows down for chains with higher density of ligands. Meanwhile, the optimal density of surface receptors where the highest superselectivity is achieved, decreases with increasing the density of ligands. Then, the conformational properties of bound multivalent chains are studied systematically. Interestingly, we find that the equilibrium radius of gyration Rg and its horizontal component have a maximum as a function of the density of surface receptors. The scaling exponents of Rg with the length of chain suggest that with increasing the density of surface receptors., the conformations of a bound multivalent polymer chain first fall in between those of a two-dimensional (2D) and a 3D chain, while it is slightly collapsed subsequently.
  • 加载中
  • [1] M. D. Disney, J. Zheng, T. M. Swager, and P. H. Seeberger, J. Am. Chem. Soc. 126, 13343 (2004).
    [2] P. I. Kitov, J. M. Sadowska, G. Mulvey, G. D. Armstrong, H. Ling, N. S. Pannu, R. J. Read, and D. R. Bundle, Nature 403, 669 (2000).
    [3] A. C. Obermeyer, S. L. Capehart, J. B. Jarman, and M. B. Francis, Plos One 9, 100678 (2014).
    [4] S. Rinker, Y. Ke, Y. Liu, R. Chhabra, and H. Yan, Nat. Nanotech. 3, 418 (2008).
    [5] M. Mammen, S. Choi, and G. M. Whitesides, Angew. Chem. Int. Ed. 37, 2754 (1998).
    [6] C. Fasting, C. A. Schalley, M.Weber, O. Seitz, S. Hecht, B. Koksch, J. Dernedde, C. Graf, E. Knapp, and R. Haag, Angew. Chem. Int. Ed. 51, 10472 (2012).
    [7] N. Brabez, R. M. Lynch, L. P. Xu, R. J. Gillies, G. Chassaing, S. Lavielle, and V. J. Hruby, J. Med. Chem. 54, 7375 (2011).
    [8] A. Bandyopadhyay, R. L. Fine, S. Demento, L. K. Bockenstedt, and T. M. Fahmy, Biomaterials 32, 3094 (2011).
    [9] K. Krannig and H. Schlaad, Soft Matter 10, 4228 (2014).
    [10] H. Connaris, E. A. Govorkova, Y. Ligertwood, B. M. Dutia, L. Yang, S. Tauber, M. A. Taylor, N. Alias, R. Hagan, A. A. Nash, R. G. Webster, and G. L. Taylor, Proc. Natl. Acad. Sci. USA 111, 6401 (2014).
    [11] A. Schroeder, D. A. Heller, M. M. Winslow, J. E. Dahlman, G. W. Pratt, R. Langer, T. Jacks, and D. G. Anderson, Nat. Rev. Cancer 12, 39 (2012).
    [12] J. Vonnemann, C. Sieben, C. Wol, K. Ludwig, C. Böttcher, A. Herrmann, and R. Haag, Nanoscale 6, 2353 (2014).
    [13] C. Yang, M. Cao, H. Liu, Y. He, J. Xu, Y. Du, Y. Liu, W. Wang, L. Cui, J. Hu, and F. Gao, J. Biol. Chem. 287, 43094 (2012).
    [14] J. Lesley, V. C. Hascall, M. Tammi, and R. Hyman, J. Biol. Chem. 275, 26967 (2000).
    [15] J. E. Gestwicki, C. W. Cairo, L. E. Strong, K. A. Oetjen, and L. L. Kiessling, J. Am. Chem. Soc. 124, 14922 (2002).
    [16] M. Kanai, K. H. Mortell, and L. L. Kiessling, J. Am. Chem. Soc. 119, 9931 (1997).
    [17] C. W. Cairo, J. E. Gestwicki, M. Kanai, and L. L. Kiessling, J. Am. Chem. Soc. 124, 1615 (2002).
    [18] T. A. Shewmake, F. J. Solis, R. J. Gillies, and M. R. Caplan, Biomacromolecules 9, 3057 (2008).
    [19] K. Godula and C. R. Bertozzi, J. Am. Chem. Soc. 134, 15732 (2012).
    [20] P. I. Kitov and D. R. Bundle, J. Am. Chem. Soc. 125, 16271 (2003).
    [21] D. J. Diestler and E. W. Knapp, Phys. Rev. Lett. 100, 178101 (2008).
    [22] S.Wang and E. E. Dormidontova, Phys. Rev. Lett. 109, 238102 (2012).
    [23] J. Huskens, A. Mulder, T. Auletta, C. A. Nijhuis, M. J. W. Ludden, and D. N. Reinhoudt, J. Am. Chem. Soc. 126, 6784 (2004).
    [24] V. M. Krishnamurthy, V. Semetey, P. J. Bracher, N. Shen, and G. M. Whitesides, J. Am. Chem. Soc. 129, 1312 (2007).
    [25] J. D. Badjić, S. J. Cantrill, and J. F. Stoddart, J. Am. Chem. Soc. 126, 2288 (2004).
    [26] E. Migliorini, D. Thakar, R. Sadir, T. Pleiner, F. Baleux, H. Lortat-Jacob, L. Coche-Guerente, and R. P. Richter, Biomaterials 35, 8903 (2014).
    [27] P. M. Wolny, S. Banerji, C. Gounou, A. R. Brisson, and A. J. Day, J. Biol. Chem. 285, 30170 (2010).
    [28] F. J. Martinez-Veracoechea and D. Frenkel, Proc. Natl. Acad. Sci. USA 108, 10963 (2011).
    [29] B. E. Collins and J. C. Paulson, Curr. Opin. Chem. Biol. 8, 617 (2004).
    [30] P. M. Morse, Phys. Rev. 34, 57 (1929).
    [31] D. Chandler, Introduction to Modern Statistical Mechanics, New York: Oxford University Press, USA, (1987).
    [32] D. L. Ermak and H. Buckholz, J. Comput. Phys. 35, 169 (1980).
    [33] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, New York: Oxford University, (1987).
    [34] A. Conway, T. Vazin, D. P. Spelke, N. A. Rode, K. E. Healy, R. S. Kane, and D. V. Schaffer, Nat. Nanotech. 8, 831 (2013).
    [35] N. Horan, L. Yan, H. Isobe, G. M. Whitesides, and D. Kahne, Proc. Natl. Acad. Sci. USA 96, 11782 (1999).
    [36] V. Kudryashov, P. W. Glunz, L. J. Williams, S. Hintermann, S. J. Danishefsky, and K. O. Lloyd, Proc. Natl. Acad. Sci. USA 98, 3264 (2001).
    [37] G. V. Dubacheva, T. Curk, B. M. Mognetti, R. Auzély-Velty, D. Frenkel, and R. P. Richter, J. Am. Chem. Soc. 136, 1722 (2014).
    [38] G. V. Dubacheva, A. V. D. Heyden, P. Dumy, O. Kaftan, R. Auzély-Velty, L. Coche-Guerente, and P. Labbé, Langmuir 26, 13976 (2010).
    [39] R. Descas, J. U. Sommer, and A. Blumen, J. Chem. Phys. 124, 094701 (2006).
    [40] P. G. de Gennes, Scaling Concepts in Polymer Physics, New York: Cornell University Press, Ithaca, (1979).
    [41] J. Sleeman, W. Rudy, M. Hofmann, J. Moll, P. Herrlich, and H. Ponta, Polymers at Interfaces, London: Chapman Hall, (1993).
    [42] W. Reisnera, N. B. Larsend, H. Flyvbjerg, J. O. Tegenfeldtc, and A. Kristensenb, Proc. Natl. Acad. Sci. USA 106, 79 (2009).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(601) PDF downloads(619) Cited by()

Proportional views
Related

Superselective Adsorption of Multivalent Polymer Chains to a Surface with Receptors

doi: 10.1063/1674-0068/29/cjcp1603060

Abstract: Multivalent polymer chains exhibit excellent prospect in biomedical applications by serving as therapeutic agents. Using three-dimensional (3D) Langevin dynamics simulations, we investigate adsorption behaviors of multivalent polymer chains to a surface with receptors. Multivalent polymer chains display superselective adsorption. Furthermore, the range of density of surface receptors at which a multivalent polymer chain displays a superselective behavior, narrows down for chains with higher density of ligands. Meanwhile, the optimal density of surface receptors where the highest superselectivity is achieved, decreases with increasing the density of ligands. Then, the conformational properties of bound multivalent chains are studied systematically. Interestingly, we find that the equilibrium radius of gyration Rg and its horizontal component have a maximum as a function of the density of surface receptors. The scaling exponents of Rg with the length of chain suggest that with increasing the density of surface receptors., the conformations of a bound multivalent polymer chain first fall in between those of a two-dimensional (2D) and a 3D chain, while it is slightly collapsed subsequently.

Hao-zhi Huang, Yu-hao Chen, Wan-cheng Yu, Kai-fu Luo. Superselective Adsorption of Multivalent Polymer Chains to a Surface with Receptors[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 564-570. doi: 10.1063/1674-0068/29/cjcp1603060
Citation: Hao-zhi Huang, Yu-hao Chen, Wan-cheng Yu, Kai-fu Luo. Superselective Adsorption of Multivalent Polymer Chains to a Surface with Receptors[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 564-570. doi: 10.1063/1674-0068/29/cjcp1603060
Reference (42)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return