Shi-yang Mi, Yuan-xu Liu, Wen-dong Wang. Photo-depositing Ru and RuO2 on Anatase TiO2 Nanosheets as Co-catalysts for Photocatalytic O2 Evolution from Water Oxidation[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 585-590. doi: 10.1063/1674-0068/29/cjcp1603057
Citation: Shi-yang Mi, Yuan-xu Liu, Wen-dong Wang. Photo-depositing Ru and RuO2 on Anatase TiO2 Nanosheets as Co-catalysts for Photocatalytic O2 Evolution from Water Oxidation[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 585-590. doi: 10.1063/1674-0068/29/cjcp1603057

Photo-depositing Ru and RuO2 on Anatase TiO2 Nanosheets as Co-catalysts for Photocatalytic O2 Evolution from Water Oxidation

doi: 10.1063/1674-0068/29/cjcp1603057
  • Received Date: 2016-03-26
  • Rev Recd Date: 2016-04-24
  • TiO2 nanosheets mainly exposed (001) facet were prepared through a hydrothermal process with HF as the morphology-directing agent. Ru and RuO2 species were loaded by photo-deposition methods to prepare the photocatalysts. The structural features of the catalysts were characterized by X-ray di raction, transmission electron microscopy, inductively cou-pled plasma atomic emission spectrum, and H2 Temperature-programmed reduction. The photocatalytic property was studied by the O2 evolution from water oxidation, which was examined with respect to the in uences of Ru contents as well as the oxidation and reduction treatments, suggesting the charge separation effect of the Ru species co-catalysts on di erent facets of TiO2 nanosheets. In contrast to Ru/TiO2 and RuO2/TiO2 with the single deposited co-catalyst, the optimized catalyst 0.5%Ru-1.0%RuO2/TiO2 with dual co-catalysts achieved a much improved catalytic performance, in terms of the synergetic effect of dual co-catalysts and the enhanced charge separation effect.
  • 加载中
  • [1] S. S. Mao and X. B. Chen, Int. J. Energ. Res. 31, 619 (2007).
    [2] A. Fujishima and K. Honda, Nature 238, 37 (1972).
    [3] X. B. Chen, S. H. Shen, L. J. Guo, and S. S. Mao, Chem. Rev. 110, 6503 (2010).
    [4] A. Fujishima, X. T. Zhang, and D. A. Tryk, Surf. Sci. Rep. 63, 515 (2008).
    [5] A. Vittadini, A. Selloni, F. P. Rotzinger, and M. Gratzel, Phys. Rev. Lett. 81, 2954 (1998).
    [6] H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, and G. Q. Lu, Nature 453, 638 (2008).
    [7] X. G. Han, Q. Kuang, M. S. Jin, Z. X. Xie, and L. S. Zheng, J. Am. Chem. Soc. 131, 3152 (2009).
    [8] G. Liu, H. G. Yang, X. W. Wang, L. N. Cheng, H. F. Lu, L. Z. Wang, G. Q. Lu, and H. M. Cheng, J. Phys. Chem. C 113, 21784 (2009).
    [9] L. C. Liu, Z. Y. Ji, W. X. Zou, X. R. Gu, Y. Deng, F. Gao, C. J. Tang, and L. Dong, Acs Catal. 3, 2052 (2013).
    [10] Y. B. Luan, L. Q. Jing, Y. Xie, X. J. Sun, Y. J. Feng, and H. G. Fu, Acs Catal. 3, 1378 (2013).
    [11] X. H. Yang, Z. Li, C. H. Sun, H. G. Yang, and C. Z. Li, Chem. Mater. 23, 3486 (2011).
    [12] W. J. Ong, L. L. Tan, S. P. Chai, S. T. Yong, and A. R. Mohamed, Nanoscale 6, 1946 (2014).
    [13] J. S. Jang, H. G. Kim, and J. S. Lee, Catal. Today 185, 270 (2012).
    [14] M. Hara, J. Nunoshige, T. Takata, J. N. Kondo, and K. Domen, Chem. Commun. 3000 (2003).
    [15] I. Tsuji, H. Kato, and A. Kudo, Chem. Mater. 18, 1969 (2006).
    [16] Y. Ebina, N. Sakai, and T. Sasaki, J. Phys. Chem. B 109, 17212 (2005).
    [17] H. Kadowaki, N. Saito, H. Nishiyama, H. Kobayashi, Y. Shimodaira, and Y. Inoue, J. Phys. Chem. C 111, 439 (2007).
    [18] H. Kato, K. Asakura, and A. Kudo, J. Am. Chem. Soc. 125, 3082 (2003).
    [19] J. L. Giocondi, P. A. Salvador, and G. S. Rohrer, Top. Catal. 44, 529 (2007).
    [20] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano. Lett. 5, 191 (2005).
    [21] P. D. Cozzoli, A. Kornowski, and H. Weller, J. Am. Chem. Soc. 125, 14539 (2003).
    [22] N. Murakami, Y. Kurihara, T. Tsubota, and T. Ohno, J. Phys. Chem. C 113, 3062 (2009).
    [23] N. Roy, Y. Sohn, and D. Pradhan, Acs. Nano. 7, 2532 (2013).
    [24] F. Lin, D. G. Wang, Z. X. Jiang, Y. Ma, J. Li, R. G. Li, and C. Li, Energ. Environ. Sci. 5, 6400 (2012).
    [25] R. G. Li, F. X. Zhang, D. G. Wang, J. X. Yang, M. R. Li, J. Zhu, X. Zhou, H. X. Han, and C. Li, Nat. Commun. 4, (2013).
    [26] R. G. Li, H. X. Han, F. X. Zhang, D. G. Wang, and C. Li, Energ. Environ. Sci. 7, 1369 (2014).
    [27] T. Abe, M. Tanizawa, K. Watanabe, and A. Taguchi, Energ. Environ. Sci. 2, 315 (2009).
    [28] G. Y.Wang, Y. X. Gao, W. D.Wang, and W. X. Huang, Chin. J. Chem. Phys. 25, 475 (2012).
    [29] Y. X. Gao, K. M. Xie, S. Y. Mi, N. Liu, W. D. Wang, and W. X. Huang, Int. J. Hydrogen. Energ. 38, 16665 (2013).
    [30] Y. H. Kim, E. D. Park, H. C. Lee, and D. Lee, Appl. Catal. A 366, 363 (2009).
    [31] X. Wang, R. G. Li, Q. Xu, H. X. Han, and C. Li, Acta. Phys. Chim. Sin. 29, 1566 (2013).
    [32] T. Tachikawa, N. Wang, S. Yamashita, S. C. Cui, and T. Majima, Angew. Chem. Int. Edit. 49, 8593 (2010).
    [33] C. Liu, X. G. Han, S. F. Xie, Q. Kuang, X. Wang, M. S. Jin, Z. X. Xie, and L. S. Zheng, Chem-Asian. J. 8, 282 (2013).
    [34] P. V. Snytnikov, V. A. Sobyanin, V. D. Belyaev, P. G. Tsyrulnikov, N. B. Shitova, and D. A. Shlyapin, Appl. Catal. A. 239, 149 (2003).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1389) PDF downloads(904) Cited by()

Proportional views
Related

Photo-depositing Ru and RuO2 on Anatase TiO2 Nanosheets as Co-catalysts for Photocatalytic O2 Evolution from Water Oxidation

doi: 10.1063/1674-0068/29/cjcp1603057

Abstract: TiO2 nanosheets mainly exposed (001) facet were prepared through a hydrothermal process with HF as the morphology-directing agent. Ru and RuO2 species were loaded by photo-deposition methods to prepare the photocatalysts. The structural features of the catalysts were characterized by X-ray di raction, transmission electron microscopy, inductively cou-pled plasma atomic emission spectrum, and H2 Temperature-programmed reduction. The photocatalytic property was studied by the O2 evolution from water oxidation, which was examined with respect to the in uences of Ru contents as well as the oxidation and reduction treatments, suggesting the charge separation effect of the Ru species co-catalysts on di erent facets of TiO2 nanosheets. In contrast to Ru/TiO2 and RuO2/TiO2 with the single deposited co-catalyst, the optimized catalyst 0.5%Ru-1.0%RuO2/TiO2 with dual co-catalysts achieved a much improved catalytic performance, in terms of the synergetic effect of dual co-catalysts and the enhanced charge separation effect.

Shi-yang Mi, Yuan-xu Liu, Wen-dong Wang. Photo-depositing Ru and RuO2 on Anatase TiO2 Nanosheets as Co-catalysts for Photocatalytic O2 Evolution from Water Oxidation[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 585-590. doi: 10.1063/1674-0068/29/cjcp1603057
Citation: Shi-yang Mi, Yuan-xu Liu, Wen-dong Wang. Photo-depositing Ru and RuO2 on Anatase TiO2 Nanosheets as Co-catalysts for Photocatalytic O2 Evolution from Water Oxidation[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 585-590. doi: 10.1063/1674-0068/29/cjcp1603057
Reference (34)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return