Zhen Yang, Yuan-hang He. Pyrolysis of CL20-BTF Co-crystal via ReaxFF-lg Reactive Force Field Molecular Dynamics Simulations[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 557-563. doi: 10.1063/1674-0068/29/cjcp1603054
Citation: Zhen Yang, Yuan-hang He. Pyrolysis of CL20-BTF Co-crystal via ReaxFF-lg Reactive Force Field Molecular Dynamics Simulations[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 557-563. doi: 10.1063/1674-0068/29/cjcp1603054

Pyrolysis of CL20-BTF Co-crystal via ReaxFF-lg Reactive Force Field Molecular Dynamics Simulations

doi: 10.1063/1674-0068/29/cjcp1603054
  • Received Date: 2016-03-22
  • Rev Recd Date: 2016-07-04
  • To obtain detailed information on the potential energy, the evolution of species, the initial reaction paths, and thermal decomposition products, we conducted simulations on pyrolysis process of CL20/BTF co-crystal using the ReaxFF/lg reaction force field, with temperature set at 2000 K to 3000 K. With the analysis of evolution curves of potential energy based on exponential function, we obtain the overall characteristic time. Via a description of the total package reaction with classical Arrhenius law, we obtain the activation energy of CL20/BTF co-crystal: Ea=60.8 kcal/mol. Based on the initial path of CL20/BTF co-crystal thermal decomposition we studied, we conclude that N-NO2 bond of CL20 molecules breaks first, working as a dominant role in the initial stage of thermal decomposition under the condition of different temperatures, and that all CL20 molecules completely decompose before BTF molecular regardless of different temperatures. We also find that the main products of CL20/BTF co-crystal are NO2, NO, NO3, HNO, O2, N2, H2O, CO2, N2O, and HONO, etc., on which the temperature forms certain influence.
  • 加载中
  • [1] A. T. Nielsen, A. P. Chafin, S. L. Christian, D. W. Moore, M. P. Nadler, R. A. Nissan, and D. Vanderah, J. Tetrahedron. 54, 11793 (1998).
    [2] R. L. Simpson, P. A. Urtiew, D. L. Ornellas, G. L. Moody, K. J. Scribner, and D. M. Hoffman, Propell. Explos. Pyrot. 22, 249 (1997).
    [3] O. Ordzhonikidze, A. Pivkina, Y. Frolov, N. Muravyev, and K. Monogarob, J. Therm. Anal. Calorim. 105, 529(2011).
    [4] C. Y. Guo, H. B. Zhang, X. C. Wang, and J. Sun, Mater. Rev. 26, 49 (2012).
    [5] C. Y. Zhang, Y. F. Cao, H. Z. Li, Y. Zhou, J. H. Zhou, Tao Gao, H. W. Zhang, Z. W. Yang, and G. Jiang, CrystEngComm. 15, 4003 (2013).
    [6] O. Bolton and A. J. Matzger, Angew. Chem. Int. Ed. 50, 8960 (2011).
    [7] Z. W. Yang, Y. L. Zhang, H. Z. Li, X. Q. Zhou, F. D. Nie, J. S. Li, and H. Huang, Chin. J. Energ. Mater. 20, 674 (2012).
    [8] O. Bolton, L. R. Simke, P. E. Pagoria, and A. J. Matzger, Cryst. Growth Des. 12, 4311 (2012).
    [9] Y. P. Wang, Z. W. Yang, H. Z. Li, Q. Zhang, J. H. Wang, and Y. C. Liu, Propell. Explos. Pyrot. 39, 590 (2014).
    [10] Z. W. Yang, H. Z. Li, X. Q. Zhou, C. Y. Zhang, H. Huang, J. S. Li, and F. D. Nie, Cryst. Growth Des. 12, 5155 (2012).
    [11] K. Chenoweth, S. Cheung, A. C. T. van Duin, W. A. Goddard, and E. M. Kober, J. Am. Chem. Soc. 127, 7192 (2005).
    [12] A. C. T. van Duin, Y. Zeiri, F. Dubnikova, R. Kosloff, and W. A. Goddard, J. Am. Chem. Soc. 127, 11053 (2005).
    [13] T. Cheng, A. Jaramillo-Botero, W. A. Goddard, and H. Sun, J. Am. Chem. Soc. 136, 9434 (2014).
    [14] D. Furman, R. Kosloff, F. Dubnikova, S. V. Zybin, W. A. Goddard, N. Rom, B. Hirshberg, and Y. Zeiri, J. Am. Chem. Soc. 136, 4192 (2014).
    [15] A. Strachan, E. M. Kober, A. C. T. van Duin, J. Oxgaard, and W. A. Goddard, J. Chem. Phys. 122, 054502 (2005).
    [16] D. Z. Guo, Q. An, S. V. Zybin, W. A. Goddard, F. L Huang, and B. Tang, J. Mater. Chem. A 3, 5409 (2015).
    [17] Z. Yang and Y. H. He, Acta Phys. -Chim. Sin. in press, doi: 10.3866/PKU.WHXB201604293
    [18] Z. Yang and Y. H. He, Acta Phys. -Chim. Sin. 32, 921 (2016).
    [19] http://lammps.sandia.gov/ (accessed Mar. 20, 2016).
    [20] A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, J. Phys. Chem. A 105, 9396(2001).
    [21] A. C. T. van Duin, A. Strachan, S. Stewman, Q. S. Zhang, and W. A. Goddard, J. Phys. Chem. A 107, 3803 (2003).
    [22] L. C. Liu, Y. Lin, S. V. Zybin, H. Sun, and W. A. Goddard, J. Phys. Chem. A 115, 11016 (2011).
    [23] C. Y. Zhang, Y. F. Cao, H. Z. Li, Y. Zhou, J. H. Zhou, T. Gao, H. B. Zhang, Z. W. Yang, and G. Jiang, CrystengComm. 15, 4003 (2012).
    [24] E. F. C. Byrd and B. M. Rice, J. Phys. Chem. 111, 2787 (2007).
    [25] U. R. Nair, R. Sivabalan, G. M. Gore, M. Geetha, S. N. Asthana, and H. Singh, Combust. Explo. Shock. 41, 121 (2005).
    [26] R. Turcotte, M. Vachon, Q. S. M. Kwok, Wang, and D. E. G. Jone, Thermochim. Acta. 433, 105 (2005).
    [27] D. Xiang, Q. Wu, Z. C. Liu, W. H. Zhu, and H. M. Xiao, Can. J. Chem. 92, 1131 (2014).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(999) PDF downloads(765) Cited by()

Proportional views
Related

Pyrolysis of CL20-BTF Co-crystal via ReaxFF-lg Reactive Force Field Molecular Dynamics Simulations

doi: 10.1063/1674-0068/29/cjcp1603054

Abstract: To obtain detailed information on the potential energy, the evolution of species, the initial reaction paths, and thermal decomposition products, we conducted simulations on pyrolysis process of CL20/BTF co-crystal using the ReaxFF/lg reaction force field, with temperature set at 2000 K to 3000 K. With the analysis of evolution curves of potential energy based on exponential function, we obtain the overall characteristic time. Via a description of the total package reaction with classical Arrhenius law, we obtain the activation energy of CL20/BTF co-crystal: Ea=60.8 kcal/mol. Based on the initial path of CL20/BTF co-crystal thermal decomposition we studied, we conclude that N-NO2 bond of CL20 molecules breaks first, working as a dominant role in the initial stage of thermal decomposition under the condition of different temperatures, and that all CL20 molecules completely decompose before BTF molecular regardless of different temperatures. We also find that the main products of CL20/BTF co-crystal are NO2, NO, NO3, HNO, O2, N2, H2O, CO2, N2O, and HONO, etc., on which the temperature forms certain influence.

Zhen Yang, Yuan-hang He. Pyrolysis of CL20-BTF Co-crystal via ReaxFF-lg Reactive Force Field Molecular Dynamics Simulations[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 557-563. doi: 10.1063/1674-0068/29/cjcp1603054
Citation: Zhen Yang, Yuan-hang He. Pyrolysis of CL20-BTF Co-crystal via ReaxFF-lg Reactive Force Field Molecular Dynamics Simulations[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 557-563. doi: 10.1063/1674-0068/29/cjcp1603054
Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return