Xiao-ping Wu, Ming-hui Fan, Quan-xin Li. Production of Benzene from Lignin through Current Enhanced Catalytic Conversion[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 479-486. doi: 10.1063/1674-0068/30/cjcp1603052
Citation: Xiao-ping Wu, Ming-hui Fan, Quan-xin Li. Production of Benzene from Lignin through Current Enhanced Catalytic Conversion[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 479-486. doi: 10.1063/1674-0068/30/cjcp1603052

Production of Benzene from Lignin through Current Enhanced Catalytic Conversion

doi: 10.1063/1674-0068/30/cjcp1603052
  • Received Date: 2017-03-24
  • Rev Recd Date: 2017-04-30
  • The directional production of benzene is achieved by the current-enhanced catalytic conversion of lignin. The synergistic effect between catalyst and current promotes the depolymerization of lignin and the selective recombinant of the functional groups in the aromatic monomers. A high benzene yield of 175 gbenzene/kglignin was obtained with an excellent selectivity of 92.9 C-mol%. The process potentially provides a promising route for the production of basic petrochemical materials or high value-added chemicals using renewable biomass.
  • 加载中
  • [1] J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, and B. M. Weckhuysen, Chem. Rev. 110, 3552(2010).
    [2] G. W. Huber and A. Corma, Angew. Chem. Int. Ed. 46, 7184(2007).
    [3] M. Kleinert, J. R. Gasson, and T. Barth, J. Anal. Appl. Pyrolysis 85, 108(2009).
    [4] H. Deng, L. Lin, and S. Liu, Energy Fuels 24, 4797(2010).
    [5] Q. Yao, Z. Tang, J. Guo, Y. Zhang, and Q. Guo, Chin. J. Chem. Phys. 28, 209(2015).
    [6] S. Wang, H. Lin, B. Ru, W. Sun, Y. Wang, and Z. Luo, J. Anal. Appl. Pyrolysis 108, 78(2014).
    [7] P. Bi, J. Wang, Y. Zhang, P. Jiang, X. Wu, J. Liu, H. Xue, T. Wang, and Q. Li, Bioresour. Technol. 183, 10(2015).
    [8] F. Bouxin, S. Baumberger, J. H. Renault, and P. Dole, Bioresour. Technol. 102, 5567(2011).
    [9] J. Zakzeski and B. M. Weckhuysen, ChemSusChem 4, 369(2011).
    [10] Q. Wu, L. Ma, J. Long, R. Shu, Q. Zhang, T. Wang, and Y. Xu, Chin. J. Chem. Phys. 29, 474(2016).
    [11] W. Xu, S. J. Miller, P. K. Agrawal, and C. W. Jones, ChemSusChem 5, 667(2012).
    [12] N. Yan, C. Zhao, P. J. Dyson, C. Wang, L. T. Liu, and Y. Kou, ChemSusChem 1, 626(2008).
    [13] J. Dai, A. F. Patti, and K. Saito, Tetrahedron Lett. 57, 4945(2016).
    [14] C. Diaz-Urrutia, B. B. Hurisso, and P. M. P. Gauthier, J. Mol. Catal. A 423, 414(2016).
    [15] K. Stark, N. Taccardi, A. Bosmann, and P. Wasserscheid, ChemSusChem 3, 719(2010).
    [16] D. J. Nowakowski, A. V. Bridgwater, D. C. Elliott, D. Meier, and P. Wild, J. Anal. Appl. Pyrolysis 88, 53(2010).
    [17] D. K. Shen, S. Gu, K. H. Luo, S. R. Wang, and M. X. Fang, Bioresour. Technol. 101, 6136(2010).
    [18] G. Jiang, D. J. Nowakowski, and A. V. Bridgwater, Energy Fuels 24, 4470(2010).
    [19] Y. Zhao, L. Deng, B. Liao, Y. Fu, and Q. X. Guo, Energy Fuels 24, 5735(2010).
    [20] C. A. Mullen, and A. A. Boateng, Fuel Process. Technol. 91, 1446(2010).
    [21] J. Zakzeski and B. M. Weckhuysen, ChemSusChem 4, 369(2011).
    [22] M. Fan, S. Deng, T. Wang, and Q. Li, Chin. J. Chem. Phys. 27, 221(2014).
    [23] J. Zhu, J. Wang, and Q. Li, Chin. J. Chem. Phys. 26, 477(2013).
    [24] Y. Zhang, P. Bi, J. Wang, P. Jiang, X. Wu, H. Xue, J. Liu, X. Zhou, and Q. Li, Appl. Energy 150, 128(2015).
    [25] J. Wang, P. Bi, Y. Zhang, H. Xue, P. Jiang, X. Wu, J. Liu, T. Wang, and Q. Li, Energy 86, 488(2015).
    [26] M. Fan, P. Jiang, P. Bi, S. Deng, L. Yan, Q. Zhai, T. Wang, and Q. Li, Bioresour. Technol. 143, 59(2013).
    [27] A. G. Gayubo, A. Alonso, B. Valle, A. T. Aguayo, M. Olazar, and J. Bilbao, Fuel 89, 3365(2010).
    [28] P. Bi, Y. Yuan, M. Fan, P. Jiang, Q. Zhai, and Q. Li, Bioresour. Technol. 136, 222(2013).
    [29] L. Yuan, T. Ye, F. Gong, Q. Guo, Y. Torimoto, M. Yamamoto, and Q. Li, Energy Fuels 23, 3103(2009).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(830) PDF downloads(611) Cited by()

Proportional views
Related

Production of Benzene from Lignin through Current Enhanced Catalytic Conversion

doi: 10.1063/1674-0068/30/cjcp1603052

Abstract: The directional production of benzene is achieved by the current-enhanced catalytic conversion of lignin. The synergistic effect between catalyst and current promotes the depolymerization of lignin and the selective recombinant of the functional groups in the aromatic monomers. A high benzene yield of 175 gbenzene/kglignin was obtained with an excellent selectivity of 92.9 C-mol%. The process potentially provides a promising route for the production of basic petrochemical materials or high value-added chemicals using renewable biomass.

Xiao-ping Wu, Ming-hui Fan, Quan-xin Li. Production of Benzene from Lignin through Current Enhanced Catalytic Conversion[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 479-486. doi: 10.1063/1674-0068/30/cjcp1603052
Citation: Xiao-ping Wu, Ming-hui Fan, Quan-xin Li. Production of Benzene from Lignin through Current Enhanced Catalytic Conversion[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 479-486. doi: 10.1063/1674-0068/30/cjcp1603052
Reference (29)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return