Cheng-yun Gong, Zhi-gang Geng, An-le Dong, Xin-xin Ye, Guo-zhong Wang, Yun-xia Zhang. Highly Efficient and Selective Removal of Pb(II) ions by Sulfur-Containing Calcium Phosphate Nanoparticles[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 607-616. doi: 10.1063/1674-0068/29/cjcp1603045
Citation: Cheng-yun Gong, Zhi-gang Geng, An-le Dong, Xin-xin Ye, Guo-zhong Wang, Yun-xia Zhang. Highly Efficient and Selective Removal of Pb(II) ions by Sulfur-Containing Calcium Phosphate Nanoparticles[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 607-616. doi: 10.1063/1674-0068/29/cjcp1603045

Highly Efficient and Selective Removal of Pb(II) ions by Sulfur-Containing Calcium Phosphate Nanoparticles

doi: 10.1063/1674-0068/29/cjcp1603045
  • Received Date: 2016-03-11
  • Rev Recd Date: 2016-04-22
  • A facile one-step co-precipitation method was demonstrated to fabricate amorphous sulfurcontaining calcium phosphate (SCP) nanoparticles, in which the sulfur group was in-situ introduced into calcium phosphate. The resulting SCP exhibited a noticeable enhanced performance for Pb(II) removal in comparison with hydroxyapatite (HAP), being capable of easily reducing 20 ppm of Pb(II) to below the acceptable standard for drinking water within less than 10 min. Remarkably, the saturated removal capacities of Pb(II) on SCP were as high as 1720.57 mg/g calculated by the Langmuir isotherm model, exceeding largely that of the previously reported absorbents. Significantly, SCP displayed highly selective removal ability toward Pb(II) ions in the presence of the competing metal ions (Ni(II), Co(II), Zn(II), and Cd(II)). Further investigations indicated that such ultra-high removal efficiency and preferable affinity of Pb(II) ions on SCP may be reasonably ascribed to the formation of rodlike hydroxypyromorphite crystals on the surface of SCP via dissolution-precipitation and ion exchange reactions, accompanied by the presence of lead sulfide precipitates. High removal efficiency, fast removal kinetics and excellent selectivity toward Pb(II) made the obtained SCP material an ideal candidate for Pb(II) ions decontamination in practical application.
  • 加载中
  • [1] B. Volesky, Hydrometallurgy 59, 203 (2001).
    [2] S. Han, L. Hu, N. Gao, A. A. Al-Ghamdi, and X. Fang, Adv. Funct. Mater. 24, 3725 (2014).
    [3] H. A. Godwin, Curr. Opin. Chem. Biol. 5, 223 (2001).
    [4] D. Liao, W. Zheng, X. Li, Q. Yang, X. Yue, L. Guo, and G. Zeng, J. Hazard. Mater. 177, 126 (2010).
    [5] H. Bedelean, A. Maicaneanu, S. Burca, and M. Stanca, Clay Miner. 44, 487 (2009).
    [6] M. Ceg lowski and G. Schroeder, Chem. Eng. J. 259, 885 (2015).
    [7] L. Largitte, T. Brudey, T. Tant, P. C. Dumesnil, and P. Lodewyckx, Micropor. Mesopor. Mater. 219, 265 (2016).
    [8] A. Mishra, B. D. Tripathi, and A. K. Rai, Int. J. Environ. Sci. Technol. 12, 3443 (2015).
    [9] H. Z. Mousavi and A. Asghari, Asian J. Chem. 21, 2881 (2009).
    [10] P. Tzvetkova, P. Vassileva, and R. Nickolov, J. Porous Mater. 17, 459 (2010).
    [11] L. Zhang, M. Fang, Nano Today. 5, 128 (2010).
    [12] L. L. Wang, L. Shen, H. Y. Jin, L. P. Zhu, and L. J. Wang, Chin. J. Chem. Phys. 27, 327 (2014).
    [13] P. Chand and Y. B. Pakade, Environ. Sci. Pollut. R. 22, 10919 (2015).
    [14] L. M. Cui, Y. G. Wang, L. H. Hu, L. Gao, B. Du, and Q. Wei, RSC Adv. 5, 9759 (2015).
    [15] M. S. Fernando, R. M. de Silva, and K. N. de Silva, Appl. Surf. Sci. 351, 95 (2015).
    [16] X. Y. Zhao, Y. J. Zhu, J. Zhao, B. Q. Lu, F. Chen, C. Qi, and J. Wu, J. Colloid Interface Sci. 416, 11 (2014).
    [17] F. Zhuang, R. Tan, W. Shen, X. Zhang, W. Xu, and W. Song, J. Alloys Compd. 637, 531 (2015).
    [18] S. Hokkanen, E. Repo, L. J. Westholm, S. Lou, T. Sainio, and M. Sillanpää, Chem. Eng. J. 252, 64 (2014).
    [19] X. Ye, W. Dazhi, T. Honggao, and W. Huixin, Chin. J. Chem. Phys. 14, 340 (2001).
    [20] E. Mavropoulos, A. M. Rossi, A. M. Costa, C. A. Perez, J. C. Moreira, and M. Saldanha, Environ. Sci. Technol. 36, 1625 (2002).
    [21] D. P. Minh, N. D. Tran, A. Nzihou, and P. Sharrock, Chem. Eng. J. 232, 128 (2013).
    [22] D. P. Minh, H. Sebei, A. Nzihou, and P. Sharrock, Chem. Eng. J. 198, 180 (2012).
    [23] O. Fardmousavi and H. Faghihian, CR. Chim. 17, 1203 (2014).
    [24] G. Li, Z. Zhao, J. Liu, and G. Jiang, J. Hazard. Mater. 192, 277 (2011).
    [25] L. C. Lin, M. Thirumavalavan, and J. F. Lee, Clean-Soil Air Water 43, 775 (2015).
    [26] R. C. Schroden, M. Al-Daous, S. Sokolov, B. J. Melde, J. C. Lytle, A. Stein, M. C. Carbajo, J. T. Fernandez, and E. E. Rodriguez, J. Hazard. Mater. 12, 3261 (2002).
    [27] J. Lee, S. Gomez-Salazar, and L. Tavlarides, Reac. Funct. Polym. 49, 159 (2001).
    [28] A. Aklil, M. Mou ih, and S. Sebti, J. Hazard. Mater. 112, 183 (2004).
    [29] K. Kazmierczak, J. Heck, and H. Höppe, Z. Anorg. All. Chem. 636, 409 (2010).
    [30] L. Xiong, C. Chen, Q. Chen, and J. Ni, J. Hazard. Mater. 189, 741 (2011).
    [31] S. H. Jang, Y. G. Jeong, B. G. Min, W. S. Lyoo, and S. C. Lee, J. Hazard. Mater. 159, 294 (2008).
    [32] K. Foo and B. Hameed, Chem. Eng. J. 156, 2 (2010)
    [33] M. A. To ghy and T. Mohammadi, J. Hazard. Mater. 185, 140 (2011).
    [34] M. Mou ih, A. Aklil, and S. Sebti, J. Hazard. Mater. 119, 183 (2005).
    [35] S. H. Jang, B. G. Min, Y. G. Jeong, W. S. Lyoo, and S. C. Lee, J. Hazard. Mater. 152, 1285 (2008).
    [36] R. Sharma, A. Puri, Y. Monga, and A. Adholeya, J. Mater. Chem. A 2, 12888 (2014).
    [37] F. Liu, Y. Jin, H. Liao, L. Cai, M. Tong, and Y. Hou, J. Mater. Chem. A 1, 805 (2013).
    [38] G. Li, Z. Zhao, J. Liu, and G. Jiang, J. Hazard. Mater. 192, 277 (2011).
    [39] S. L. Ma, Q. M. Chen, H. Li, P. L. Wang, S. M. Islam, Q. Y. Gu, X. J. Yang, and M. G. Kanatzidis, J. Mater. Chem. A 2, 10280 (2014).
    [40] N. F. Mohammad, R. Othman, and F. Y. Yeoh, Ceram. Int. 41, 10624 (2015).
    [41] S. Ramesh, N. Rameshbabu, R. Gandhimathi, M. S. Kumar, and P. Nidheesh, Appl. Water Sci. 3, 105 (2013).
    [42] I. Chakraborty and S. P. Moulik, J. Nanopart. Res. 7, 237 (2005).
    [43] A. Lobo, T. Möller, M. Nagel, H. Borchert, S. Hickey, and H. Weller, J. Phys. Chem. B 109, 17422 (2005).
    [44] H. Zhao, M. Chaker, and D. Ma, Phys. Chem. Chem. Phys. 12, 14754 (2010).
    [45] H. Zhao, D. Wang, T. Zhang, M. Chaker, and D. Ma, Chem. Commun. 46, 5301 (2010).
    [46] W. E. Morgan and J. R. Van Wazer, J. Phys. Chem. 77, 964 (1973).
    [47] A. M. Puziy, O. I. Poddubnaya, R. P. Socha, J. Gurgul, and M. Wisniewski, Carbon 46, 2113 (2008).
    [48] X. R. Yu, F. Liu, Z. Y.Wang, and Y. Chen, J. Electron. Spectrosc. Relat. Phenom. 50, 159 (1990).
    [49] L. Hernán, J. Morales, L. Sánchez, J. Tirado, J. Espinos, and A. González Elipe, Chem. Mater. 7, 1576 (1995).
    [50] L. Kong, L. Yan, Z. Qu, N. Yan, and L. Li, J. Mater. Chem. A 3, 15755 (2015).
    [51] Y. Lei, J. J. Guan, W. Chen, Q. F. Ke, C. Q. Zhang, and Y. P. Guo, RSC Adv. 5, 25462 (2015).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(679) PDF downloads(483) Cited by()

Proportional views
Related

Highly Efficient and Selective Removal of Pb(II) ions by Sulfur-Containing Calcium Phosphate Nanoparticles

doi: 10.1063/1674-0068/29/cjcp1603045

Abstract: A facile one-step co-precipitation method was demonstrated to fabricate amorphous sulfurcontaining calcium phosphate (SCP) nanoparticles, in which the sulfur group was in-situ introduced into calcium phosphate. The resulting SCP exhibited a noticeable enhanced performance for Pb(II) removal in comparison with hydroxyapatite (HAP), being capable of easily reducing 20 ppm of Pb(II) to below the acceptable standard for drinking water within less than 10 min. Remarkably, the saturated removal capacities of Pb(II) on SCP were as high as 1720.57 mg/g calculated by the Langmuir isotherm model, exceeding largely that of the previously reported absorbents. Significantly, SCP displayed highly selective removal ability toward Pb(II) ions in the presence of the competing metal ions (Ni(II), Co(II), Zn(II), and Cd(II)). Further investigations indicated that such ultra-high removal efficiency and preferable affinity of Pb(II) ions on SCP may be reasonably ascribed to the formation of rodlike hydroxypyromorphite crystals on the surface of SCP via dissolution-precipitation and ion exchange reactions, accompanied by the presence of lead sulfide precipitates. High removal efficiency, fast removal kinetics and excellent selectivity toward Pb(II) made the obtained SCP material an ideal candidate for Pb(II) ions decontamination in practical application.

Cheng-yun Gong, Zhi-gang Geng, An-le Dong, Xin-xin Ye, Guo-zhong Wang, Yun-xia Zhang. Highly Efficient and Selective Removal of Pb(II) ions by Sulfur-Containing Calcium Phosphate Nanoparticles[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 607-616. doi: 10.1063/1674-0068/29/cjcp1603045
Citation: Cheng-yun Gong, Zhi-gang Geng, An-le Dong, Xin-xin Ye, Guo-zhong Wang, Yun-xia Zhang. Highly Efficient and Selective Removal of Pb(II) ions by Sulfur-Containing Calcium Phosphate Nanoparticles[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 607-616. doi: 10.1063/1674-0068/29/cjcp1603045
Reference (51)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return