Fu-qiang Jing, Jian-wei Cao, Xiao-jun Liu, Yu-feng Hu, Hai-tao Ma, Wen-sheng Bian. Theoretical Study on Mechanism and Kinetics of Reaction of O(3P) with Propane[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 430-436. doi: 10.1063/1674-0068/29/cjcp1603042
Citation: Fu-qiang Jing, Jian-wei Cao, Xiao-jun Liu, Yu-feng Hu, Hai-tao Ma, Wen-sheng Bian. Theoretical Study on Mechanism and Kinetics of Reaction of O(3P) with Propane[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 430-436. doi: 10.1063/1674-0068/29/cjcp1603042

Theoretical Study on Mechanism and Kinetics of Reaction of O(3P) with Propane

doi: 10.1063/1674-0068/29/cjcp1603042
  • Received Date: 2016-03-07
  • Rev Recd Date: 2016-04-29
  • The reaction of C3H8+O(3P)→C3H7+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Møller-Plesset perturbation method and the single-point energy is computed using the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C3H8+O(3P)→i-C3H7+OH. Based upon the ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogen-abstraction from propane involving reaction channel competitions is helpful for the under-standing of propane combustion.
  • 加载中
  • [1] K. J. Morganti, T. M. Foong, M. J. Brear, G. da Silva, Y. Yang, and F. L. Dryer, Fuel 108, 797 (2013).
    [2] N. C. Surawski, B. Miljevic, T. A. Bodisco, R. Situ, R. J. Brown, and Z. D. Ristovski, Fuel 133, 17 (2014).
    [3] A. G. McLain and C. J. Jachimowski, NASA Technical Note. D-8501 (1977).
    [4] S. P. Jewell, K. A. Holbrook, and G. A. Oldershaw, Int. J. Chem. Kinet. 13, 69 (1981).
    [5] N. Cohen and K. R. Westberg, J. Phys. Chem. 20, 1211 (1991).
    [6] A. Miyoshi, K. Tsuchiya, N. Yamauchi, and H. Matsui, J. Phys. Chem. 98, 11452 (1994).
    [7] A. Miyoshi, N. Yamauchi, and H. Matsui, J. Phys. Chem. 100, 4893 (1996).
    [8] J. Zhang, L. Yang, and D. Troya, Chin. J. Chem. Phys. 26, 765 (2013).
    [9] D. Troya and G. C. Schatz, Theor. Chem. Rea. Dynam. 145, 329 (2004).
    [10] D. Troya, J. Phys. Chem A 111, 10745 (2007).
    [11] C. Gonzalez and H. B. Schlegel, J. Phys. Chem. 94, 5523 (1990).
    [12] K. Fukuil, J. Phys. Chem. 74, 4161 (1970).
    [13] H. Zhao, W. Bian, and K. Liu, J. Phys. Chem. A 110, 7858 (2006).
    [14] H. Zhao, L. Pan, and W. Bian, Int. J. Quantum. Chem. 112, 858 (2012).
    [15] H. Ma, C. Shi, W. Bian, H. Su, and F. Kong, Chin. J. Chem. Phys. 20, 383 (2007).
    [16] J. Cao, Z. Zhang, C. Zhang, W. Bian, and Y. Guo, J. Chem. Phys. 134. 024315 (2011).
    [17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheese-man, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,Ö O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Wallingford CT: Gaussian, Inc., (2010).
    [18] J. Zheng, S. Zhang, B. J. Lynch, J. C. Corchado, Y. Y. Chuang, P. L. Fast, W. P. Hu, Y. P. Liu, G. C. Lynch, K. A. Nguyen, C. F. Jackels, A. Fernandez Ramos, B. A. Ellingson, V. S. Melissas, J. Villà, I. Rossi, E. L. Coitiño, J. Pu, T. V. Albu, A. Ratkiewicz, R. Steckler, B. C. Garrett, A. D. Isaacson, and D. G. Truhlar, Polyrate, version 2015, Minneapolis: University of Minnesota, (2015).
    [19] Q. S. Li, J. Yang, and S. Zhang, J. Phys. Chem. A. 110, 11113 (2006).
    [20] H. Ma, X. Liu, W. Bian, L. Meng, and S. Zheng, ChemPhysChem. 7, 1786 (2006).
    [21] W. J. van Zeist, A. H. Koers, L. P. Wolters, and F. M. Bickelhaupt, J. Chem. Theory Comput. 4, 920 (2008).
    [22] X. Liu, W. Bian, X. Zhao, and X. Tao, J. Chem. Phys. 125, 074306 (2006).
    [23] D. Skouteris, D. E. Manolopoulos, W. Bian, H. J. Werner, L. H. Lai, and K. Liu, Science 286, 1713 (1999).
    [24] C. Zhang, M. Fu, Z. Shen, H. Ma, and W. Bian, J. Chem. Phys. 140, 234301 (2014).
    [25] J. Yu, S. Chen, and C. Yu, J. Chem. Phys. 118, 582 (2003).
    [26] A. Neugebauer and G. Häfelinger, Int. J. Mol. Sci. 6, 157 (2005).
    [27] K. G. M. Florian Ausfeldera, Prog. React. Kinet. Mech. 25, 299 (2000).
    [28] K. Ukui, Acc. Chem. Res. 14, 363 (1981).
    [29] K. Ishida, K. Morokuma, and A. Komornicki, J. Chem. Phys. 66, 2153 (1977).
    [30] X. Liu, M. A. MacDonald, and R. D. Coombe, J. Phys. Chem. 96, 4907 (1992).
    [31] T. H. R. Lowry, K. S Richardson, Mechanism and The-ory in Organic Chemistry, New York: Harper and Row, 232 (1987).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(776) PDF downloads(571) Cited by()

Proportional views
Related

Theoretical Study on Mechanism and Kinetics of Reaction of O(3P) with Propane

doi: 10.1063/1674-0068/29/cjcp1603042

Abstract: The reaction of C3H8+O(3P)→C3H7+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Møller-Plesset perturbation method and the single-point energy is computed using the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C3H8+O(3P)→i-C3H7+OH. Based upon the ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogen-abstraction from propane involving reaction channel competitions is helpful for the under-standing of propane combustion.

Fu-qiang Jing, Jian-wei Cao, Xiao-jun Liu, Yu-feng Hu, Hai-tao Ma, Wen-sheng Bian. Theoretical Study on Mechanism and Kinetics of Reaction of O(3P) with Propane[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 430-436. doi: 10.1063/1674-0068/29/cjcp1603042
Citation: Fu-qiang Jing, Jian-wei Cao, Xiao-jun Liu, Yu-feng Hu, Hai-tao Ma, Wen-sheng Bian. Theoretical Study on Mechanism and Kinetics of Reaction of O(3P) with Propane[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 430-436. doi: 10.1063/1674-0068/29/cjcp1603042
Reference (31)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return