Zhen-zhen Wan, Zhong-min Wang, Dian-hui Wang, Yan Zhong, Jian-qiu Deng, Huai-ying Zhou, Chao-hao Hu. Alloying Effect Study on Thermodynamic Stability of MgH2 by First-principles Calculation[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 545-548. doi: 10.1063/1674-0068/29/cjcp1602036
Citation: Zhen-zhen Wan, Zhong-min Wang, Dian-hui Wang, Yan Zhong, Jian-qiu Deng, Huai-ying Zhou, Chao-hao Hu. Alloying Effect Study on Thermodynamic Stability of MgH2 by First-principles Calculation[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 545-548. doi: 10.1063/1674-0068/29/cjcp1602036

Alloying Effect Study on Thermodynamic Stability of MgH2 by First-principles Calculation

doi: 10.1063/1674-0068/29/cjcp1602036
  • Received Date: 2016-02-29
  • Rev Recd Date: 2016-05-12
  • First-principles calculations based on density functional theory were performed to study the effect of alloying on the thermodynamic stability of MgH2 hydride (rutile and fluorite structures) with transitional metals (TM=Sc, Ti, Y) and group IIA elements (M=Ca, Sr, Ba). The results indicate that fluorite structure of these hydrides are more stable than its relative rutile structure at low alloying content (less 20%), structural destabilization of MgH2 appears in the alloying cases of Ti, Sr and Ba respectively. The structure-transition point from rutile structure to fluorite structure is at around 20% for MgH2-TM, and about 40% for MgH2-M. The formation enthalpy of fluorite Mg0.5Ba0.52 is about 0.3 eV and higher than that of fluorite MgH2, indicating that its hydrogen-desorption temperature at atmospheric pressure will be much lower than that of pure MgH2. Good consistency between experimental and calculated data suggests that above-adopted method is useful to predict structural transition and properties of MgH2 based hydrides for hydrogen storage.
  • 加载中
  • [1] J. Huot, G. Liang, S. Boily, A. Van Neste, and R. Schulz, J. Alloys Compd. 293, 495 (1999).
    [2] A. Ranjbar, Z. P. Guo, X. B. Yu, D. Wexler, A. Calka, C. J. Kim, and H. K. Liu, Mater. Chem. Phys. 114, 168 (2009).
    [3] X. Luo, D. M. Grant, and G. S. Walker, J. Alloys Compd. 622, 842 (2015).
    [4] M. Abdellatief, R. Campostrini, M. Leoni, and P. Scardi, Int. J. Hydrogen Energy 38, 4664 (2013).
    [5] N. E. Galushkin, N. N. Yazvinskaya, and D. N. Galushkin, ECS Electrochem. Lett. 2, A1-2 (2013).
    [6] S. C. Zhou, R. K. Pan, T. P. Luo, D. H. Wu, L. T. Wei, and B. Y. Tang, Int. J. Hydrogen Energy 39, 9254 (2014).
    [7] T. Kelkar and S. Pal, J. Mater. Chem. 19, 4348 (2009).
    [8] T. Kelkar, S. Pal, and D. G. Kanhere, Chem. Phys. Chem. 9, 928 (2008).
    [9] J. H. Dai, Y. Song, and R. Yang, Int. J. Hydrogen Energy 36, 12939 (2011).
    [10] J. H. Dai, Y. Song, and R. Yang, J. Phys. Chem. C 114, 11328 (2010).
    [11] S. Er, D. Tiwari, G. A. Wijs, and G. Brocks, Phys. Rev. B 79, 024105 (2009).
    [12] B. P. Mamula, J. G. Novaković, I. Radisavljević, N. Ivanović, and N. Novaković, Int. J. Hydrogen Energy 39, 5874 (2014).
    [13] P. H. L. Notten, M. Ouwerkerk, H. van Hal, D. Beelen, W. Keur, and J. Zhou, J. Power Sources 129, 45 (2004).
    [14] W. P. Kalisvaart, R. A. H. Niessen, and P. H. L. Notten, J. Alloy Compd. 417, 280 (2006).
    [15] M. S. Conradi, M. P. Mendenhall, T. M. Ivancic, E. A. Carl, C. D. Browning, and P. H. L. Notten, J. Alloy Compd. 447, 499 (2007).
    [16] P. Vajeeston, P. Ravindran, A. Kjekshus, and H. Fjellvåg, Phys. Rev. Lett. 89, 175506 (2002).
    [17] P. Vajeeston, P. Ravindran, B. C. Hauback, H. Fjellvåg, A. Kjekshus, Furuseth, and M. Han and, Phys. Rev. B 73, 224102 (2006).
    [18] B. R. Pauw, W. P. Kalisvaart, S. X. Tao, M. T. M. Koper, A. P. J. Jansen, and P. H. L. Notten, Acta Materialia 56, 2948 (2008).
    [19] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
    [20] P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
    [21] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    [22] R. Griessen and T. Riesterer, Heat of Formation Models, In: L. Schlapbach Ed., Berlin: Springer, (1988).
    [23] K. Miwa and A. Fukumoto, Phys. Rev. B 65, 155114 (2002).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(748) PDF downloads(578) Cited by()

Proportional views
Related

Alloying Effect Study on Thermodynamic Stability of MgH2 by First-principles Calculation

doi: 10.1063/1674-0068/29/cjcp1602036

Abstract: First-principles calculations based on density functional theory were performed to study the effect of alloying on the thermodynamic stability of MgH2 hydride (rutile and fluorite structures) with transitional metals (TM=Sc, Ti, Y) and group IIA elements (M=Ca, Sr, Ba). The results indicate that fluorite structure of these hydrides are more stable than its relative rutile structure at low alloying content (less 20%), structural destabilization of MgH2 appears in the alloying cases of Ti, Sr and Ba respectively. The structure-transition point from rutile structure to fluorite structure is at around 20% for MgH2-TM, and about 40% for MgH2-M. The formation enthalpy of fluorite Mg0.5Ba0.52 is about 0.3 eV and higher than that of fluorite MgH2, indicating that its hydrogen-desorption temperature at atmospheric pressure will be much lower than that of pure MgH2. Good consistency between experimental and calculated data suggests that above-adopted method is useful to predict structural transition and properties of MgH2 based hydrides for hydrogen storage.

Zhen-zhen Wan, Zhong-min Wang, Dian-hui Wang, Yan Zhong, Jian-qiu Deng, Huai-ying Zhou, Chao-hao Hu. Alloying Effect Study on Thermodynamic Stability of MgH2 by First-principles Calculation[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 545-548. doi: 10.1063/1674-0068/29/cjcp1602036
Citation: Zhen-zhen Wan, Zhong-min Wang, Dian-hui Wang, Yan Zhong, Jian-qiu Deng, Huai-ying Zhou, Chao-hao Hu. Alloying Effect Study on Thermodynamic Stability of MgH2 by First-principles Calculation[J]. Chinese Journal of Chemical Physics , 2016, 29(5): 545-548. doi: 10.1063/1674-0068/29/cjcp1602036
Reference (23)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return