Yu-neng Shen, Bo Jiang, Chuan-qi Ge, Gang-hua Deng, Hai-long Chen, Xue-ming Yang, Kai-jun Yuan, Jun-rong Zheng. Intermolecular Vibrational Energy Transfers in Melts and Solutions[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 407-417. doi: 10.1063/1674-0068/29/cjcp1602028
Citation: Yu-neng Shen, Bo Jiang, Chuan-qi Ge, Gang-hua Deng, Hai-long Chen, Xue-ming Yang, Kai-jun Yuan, Jun-rong Zheng. Intermolecular Vibrational Energy Transfers in Melts and Solutions[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 407-417. doi: 10.1063/1674-0068/29/cjcp1602028

Intermolecular Vibrational Energy Transfers in Melts and Solutions

doi: 10.1063/1674-0068/29/cjcp1602028
  • Received Date: 2016-02-25
  • Rev Recd Date: 2016-04-06
  • Resonant and nonresonant intermolecular vibrational energy transfers in Gdm-SCN/KSCN=1/1, GdmSCN/KS13CN=1/1 and GdmSCN/KS113C15N=1/1 mixed crystals in melts and in aqueous solutions are studied with the two dimensional infrared spectroscopy. The energy transfers in the samples are slower with a larger energy donor/acceptor gap, independent of the Raman spectra. The energy gap dependences of the nonresonant energy transfers cannot be described by the phonon compensation mechanism. Instead, the experimental energy gap dependences can be quantitatively described by the dephasing mechanism. Temperature dependences of resonant and nonresonant energy transfer rates in the melts are also consistent with the prediction of the dephasing mechanism. The series of results suggest that the dephasing mechanism can be dominant not only in solutions, but also in melts (pure liquids without solvents), only if the molecular motions (translations and rotations) are much faster than the nonresonant energy transfer processes.
  • 加载中
  • [1] C. B. Harris, D. E. Smith, and D. J. Russell, Chem. Rev. 90, 481 (1990).
    [2] D. D. Dlott, Chem. Phys. 266, 149 (2001).
    [3] E. J. Heilweil, M. P. Casassa, R. R. Cavanagh, and J. C. Stephenson, J. Chem. Phys. 85, 5004 (1986).
    [4] E. J. Heilweil, R. R. Cavanagh, and J. C. Stephenson, J. Chem. Phys. 89, 230 (1988).
    [5] M. Tuckerman and B. J. Berne, J. Chem. Phys. 98, 7301 (1993).
    [6] V. M. Kenkre, A. Tokmakoff, and M. D. Fayer, J. Chem. Phys. 101, 10618 (1994).
    [7] D. W. Miller and S. A. Adelman, Int. Rev. Phys. Chem. 13, 359 (1994).
    [8] A. Tokmakoff, B. Sauter, and M. D. Fayer, J. Chem. Phys. 100, 9035 (1994).
    [9] R. Rey and J. T. Hynes, J. Chem. Phys. 104, 2356 (1996).
    [10] H. Graener, R. Zurl, and M. Hofmann, J. Phys. Chem. B 101, 1745 (1997).
    [11] J. C. Deak, L. K. Iwaki, S. T. Rhea, and D. D. Dlott, J. Raman Spectrosc. 31, 263 (2000).
    [12] G. Seifert, R. Zurl, T. Patzlaff, and H. Graener, J. Chem. Phys. 112, 6349 (2000).
    [13] E. L. Sibert and R. Rey, J. Chem. Phys. 116, 237 (2002).
    [14] Z. H.Wang, A. Pakoulev, and D. D. Dlott, Science 296, 2201 (2002).
    [15] J. C. Deak, Y. S. Pang, T. D. Sechler, Z. H. Wang, and D. D. Dlott, Science 306, 473 (2004).
    [16] P. B. Graham, K. J. M. Matus, and R. M. Stratt, J. Chem. Phys. 121, 5348 (2004).
    [17] A. Ma and R. M. Stratt, J. Chem. Phys. 121, 11217 (2004).
    [18] G. Hanna and E. Geva, J. Phys. Chem. B 112, 15793 (2008).
    [19] D. M. Leitner, Annu. Rev. Phys. Chem. 59, 233 (2008).
    [20] H. Fujisaki, K. Yagi, J. E. Straub, and G. Stock, Int. J. Quantum Chem. 109, 2047 (2009).
    [21] I. V. Rubtsov and R. M. Hochstrasser, J. Phys. Chem. B 106, 9165 (2002).
    [22] D. V. Kurochkin, S. R. G. Naraharisetty, and I. V. Rubtsov, Proc. Natl. Acad. Sci. USA 104, 14209 (2007).
    [23] M. Schade, A. Moretto, M. Crisma, C. Toniolo, and P. Hamm, J. Phys. Chem. B 113, 13393 (2009).
    [24] N. I. Rubtsova and I. V. Rubtsov, Annu. Rev. Phys. Chem. 66, 717 (2015).
    [25] H. M. Muller-Werkmeister and J. Bredenbeck, Phys. Chem. Chem. Phys. 16, 3261 (2014).
    [26] A. L. Le Sueur, R. E. Horness, and M. C. Thielges, Analyst 140, 4336 (2015).
    [27] M. S. Lynch, K. M. Slenkamp, and M. Khalil, J. Chem. Phys. 136, 241101 (2012).
    [28] M. Yang, F. Li, and J. L. Skinner, J. Chem. Phys. 135, 10 (2011).
    [29] J. L. Skinner, Theor. Chem. Acc. 128, 147 (2011).
    [30] H. Bian, J. Li, X. Wen, and J. Zheng, J. Chem. Phys. 132, 184505 (2010).
    [31] H. Bian, X. Wen, J. Li and J. Zheng, J. Chem. Phys. 133, 034505 (2010).
    [32] H. Bian, H. Chen, J. Li, X. Wen, and J. Zheng, J. Phys. Chem. A 115, 11657 (2011).
    [33] H. T. Bian, X. W. Wen, J. B. Li, H. L. Chen, S. Z. Han, X. Q. Sun, J. A. Song, W. Zhuang, and J. R. Zheng, Proc. Natl. Acad. Sci. USA 108, 4737 (2011).
    [34] H. Bian, J. Li, Q. Zhang, H. Chen, W. Zhuang, Y. Q. Gao, and J. Zheng, J. Phys. Chem. B 116, 14426 (2012).
    [35] J. Li, H. Bian, X.Wen, H. Chen, K. Yuan, and J. Zheng, J. Phys. Chem. B 116, 12284 (2012).
    [36] J. Li, H. Bian, H. Chen, X. Wen, B. T. Hoang, and J. Zheng, J. Phys. Chem. B 117, 4274 (2013).
    [37] H. Chen, X. Wen, X. Guo, and J. Zheng, Phys. Chem. Chem. Phys. 16, 13995 (2014).
    [38] H. Chen, X. Wen, J. Li, and J. Zheng, J. Phys. Chem. A 118, 2463 (2014).
    [39] H. Chen, H. Bian, J. Li, X. Wen, Q. Zhang, W. Zhuang, and J. Zheng, J. Phys. Chem. B 119, 4333 (2015).
    [40] H. Chen, Q. Zhang, X. Guo, X. Wen, J. Li, W. Zhuang, and J. Zheng, J. Phys. Chem. A 119, 669 (2015).
    [41] S.Woutersen and H. J. Bakker, Nature 402, 507 (1999).
    [42] G. D. Scholes, Annu. Rev. Phys. Chem. 54, 57 (2003).
    [43] H. L. Chen, H. T. Bian, J. B. Li, X. W. Wen, and J. R. Zheng, Int. Rev. Phys. Chem. 31, 469 (2012).
    [44] K. Yuan, H. Bian, Y. Shen, B. Jiang, J. Li, Y. Zhang, H. Chen, and J. Zheng, J. Phys. Chem. B 118, 3689 (2014).
    [45] Y. Shen, T. Wu, B. Jiang, G. Deng, J. Li, H. Chen, X. Guo, C. Ge, Y. Chen, J. Hong, X. Yang, K. Yuan, W. Zhuang, and J. Zheng, J. Phys. Chem. B 119, 9893 (2015).
    [46] S. A. Egorov and J. L. Skinner, J. Chem. Phys. 103, 1533 (1995).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(545) PDF downloads(542) Cited by()

Proportional views
Related

Intermolecular Vibrational Energy Transfers in Melts and Solutions

doi: 10.1063/1674-0068/29/cjcp1602028

Abstract: Resonant and nonresonant intermolecular vibrational energy transfers in Gdm-SCN/KSCN=1/1, GdmSCN/KS13CN=1/1 and GdmSCN/KS113C15N=1/1 mixed crystals in melts and in aqueous solutions are studied with the two dimensional infrared spectroscopy. The energy transfers in the samples are slower with a larger energy donor/acceptor gap, independent of the Raman spectra. The energy gap dependences of the nonresonant energy transfers cannot be described by the phonon compensation mechanism. Instead, the experimental energy gap dependences can be quantitatively described by the dephasing mechanism. Temperature dependences of resonant and nonresonant energy transfer rates in the melts are also consistent with the prediction of the dephasing mechanism. The series of results suggest that the dephasing mechanism can be dominant not only in solutions, but also in melts (pure liquids without solvents), only if the molecular motions (translations and rotations) are much faster than the nonresonant energy transfer processes.

Yu-neng Shen, Bo Jiang, Chuan-qi Ge, Gang-hua Deng, Hai-long Chen, Xue-ming Yang, Kai-jun Yuan, Jun-rong Zheng. Intermolecular Vibrational Energy Transfers in Melts and Solutions[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 407-417. doi: 10.1063/1674-0068/29/cjcp1602028
Citation: Yu-neng Shen, Bo Jiang, Chuan-qi Ge, Gang-hua Deng, Hai-long Chen, Xue-ming Yang, Kai-jun Yuan, Jun-rong Zheng. Intermolecular Vibrational Energy Transfers in Melts and Solutions[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 407-417. doi: 10.1063/1674-0068/29/cjcp1602028
Reference (46)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return