Qing-yun Wu, Long-long Ma, Jin-xing Long, Ri-yang Shu, Qi Zhang, Tie-jun Wang, Ying Xu. Depolymerization of Organosolv Lignin over Silica-alumina Catalysts[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 474-480. doi: 10.1063/1674-0068/29/cjcp1601017
Citation: Qing-yun Wu, Long-long Ma, Jin-xing Long, Ri-yang Shu, Qi Zhang, Tie-jun Wang, Ying Xu. Depolymerization of Organosolv Lignin over Silica-alumina Catalysts[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 474-480. doi: 10.1063/1674-0068/29/cjcp1601017

Depolymerization of Organosolv Lignin over Silica-alumina Catalysts

doi: 10.1063/1674-0068/29/cjcp1601017
  • Received Date: 2016-01-26
  • Rev Recd Date: 2016-05-26
  • E cient conversion of lignin to fine chemicals and biofuel become more and more attractive in biorefinery. In this work, we used a series of silica-alumina catalysts (i.e., SiO2-Al2O3, HY, Hβ, and HZSM-5) to degrade lignin into arenes and phenols. The relationship between the catalyst structure and lignin depolymerization performance was investigated. The results showed that both acidity and pore size of the catalyst could in uence the conversion of lignin. In the volatilizable product, phenols were identified as the main phenolic monomers via gas chromatography-mass spectrometer. SiO2-Al2O3 was the most effcient catalyst, giving 90.96% degree of conversion, 12.91% yield of phenols, and 2.41% yield of arenes in ethanol at 280℃ for 4 h. The Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy analysis demonstrated that deoxygenation and alkylation occurred in this process. The effect of solvents was also investigated and the results showed that ethanol was the most effcient solvent.
  • 加载中
  • [1] J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, and B. M. Weckhuysen, Chem. Rev. 110, 3552 (2010).
    [2] A. J. Ragauskas, G. T. Beckham, M. J. Biddy, R. Chan-dra, F. Chen, M. F. Davis, B. H. Davison, R. A. Dixon, P. Gilna, M. Keller, P. Langan, A. K. Naskar, J. N. Saddler, T. J. Tschaplinski, G. A. Tuskan, and C. E. Wyman, Science 344, 1246843 (2014).
    [3] P. Azadi, O. R. Inderwildi, R. Farnood, and D. A. King, Renew. Sust. Energ. Rev 21, 506 (2013).
    [4] Q. Song, F. Wang, and J. Xu, Chem. Comm. 48, 7019 (2012).
    [5] X. Erdocia, R. Prado, M. Á. Corcuera, and J. Labidi, Biomass Bioenergy 66, 379 (2014).
    [6] C. A. Chen, H. Pakdel, and C. Roy, Bioresour. Technol. 79 , 27 (2001).
    [7] N. Yan, C. Zhao, P. J. Dyson, C. Wang, L. T. Liu, and Y. Kou, ChemSusChem 1, 626 (2008).
    [8] R. Ma, W. Hao, X. Ma, Y. Tian, and Y. Li, Angew. Chem. 53, 7310 (2014).
    [9] X. Ma, K. Cui, W. Hao, R. Ma, Y. Tian, and Y. Li, Bioresour. Technol. 192, 17 (2015).
    [10] X. Ma, R. Ma, W. Hao, M. Chen, F. Yan, K. Cui, Y. Tian, and Y. Li, ACS Catal. 5, 4803 (2015).
    [11] R. Shu, J. Long, Z. Yuan, Q. Zhang, T.Wang, C.Wang, and L. Ma, Bioresour. Technol. 179 84 (2015).
    [12] A. Toledano, L. Serrano, A. M. Balu, R. Luque, A. Pineda, and J. Labidi, ChemSusChem 6, 529 (2013).
    [13] I. Klein, B. Saha, and M. M. Abu-Omar, Catal. Sci. Technol. 5, 3242 (2015).
    [14] M. R. Sturgeon, S. Kim, K. Lawrence, R. S. Paton, S. C. Chmely, M. Nimlos, T. D. Foust, and G. T. Beckham, ACS. Sustain. Chem. Eng. 2, 472 (2014).
    [15] A. K. Deepa and P. L. Dhepe, ACS. Catal. 5, 365 (2015).
    [16] J. Long, W. Lou, L. Wang, B. Yin, and X. Li, Chem. Eng. Sci. 122, 24 (2015).
    [17] S. Kirumakki, B. Shpeizer, G. Sagar, K. Chary, and A. Clear eld, J. Catal. 242, 319 (2006).
    [18] A. Galadima and O. Muraza, J. Ind. Eng. Chem. 31, 1 (2015).
    [19] B. Joffres, C. Lorentz, M. Vidalie, D. Laurenti, A. A. Quoineaud, N. Charon, A. Daudin, A. Quignard, and C. Geantet, Appl. Catal. B 145, 167 (2014).
    [20] M. A. Jackson, D. L. Compton, and A. A. Boateng, J. Anal. Appl. Pyrolysis 85, 226 (2009).
    [21] P. J. Deuss, M. Scott, F. Tran, N. J. Westwood, J. G. de Vries, and K. Barta, J. Am. Chem. Soc. 23, 7456 (2015).
    [22] Z. Ma, E. Troussard, and J. A. van Bokhoven, Appl. Catal. A 423, 130 (2012).
    [23] K. Barta, T. D. Matson, M. L. Fettig, S. L. Scott, A. V. Iretskii, and P. C. Ford, Green. Chem. 12, 1640 (2010).
    [24] Z. Jiang, T. He, J. Li, and C. Hu, Green. Chem. 16, 4257 (2014).
    [25] Y. Yang, C. W. Hu, and M. M. Abu-Omar, Green. Chem. 14, 509 (2012).
    [26] Y. Y. Ge, Z. Q. Jia, C. G. Gao, L. L. Zhao, H. T. Li, Y. Zhang, and Y. X. Zhao, Kinet. Catal. 54, 761 (2013).
    [27] Q. Song, F. Wang, J. Cai, Y. Wang, J. Zhang, W. Yu, J. Xu, Energ. Environ. Sci. 6, 994 (2013).
    [28] J. R. S. G. A. Deluga, L. D. Schmidt, and X. E. Verykios, Science 303, 993 (2004).
    [29] X. Huang, T. I. Koranyi, M. D. Boot, and E. J. Hensen, ChemSusChem 7, 2276 (2014).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(676) PDF downloads(857) Cited by()

Proportional views
Related

Depolymerization of Organosolv Lignin over Silica-alumina Catalysts

doi: 10.1063/1674-0068/29/cjcp1601017

Abstract: E cient conversion of lignin to fine chemicals and biofuel become more and more attractive in biorefinery. In this work, we used a series of silica-alumina catalysts (i.e., SiO2-Al2O3, HY, Hβ, and HZSM-5) to degrade lignin into arenes and phenols. The relationship between the catalyst structure and lignin depolymerization performance was investigated. The results showed that both acidity and pore size of the catalyst could in uence the conversion of lignin. In the volatilizable product, phenols were identified as the main phenolic monomers via gas chromatography-mass spectrometer. SiO2-Al2O3 was the most effcient catalyst, giving 90.96% degree of conversion, 12.91% yield of phenols, and 2.41% yield of arenes in ethanol at 280℃ for 4 h. The Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy analysis demonstrated that deoxygenation and alkylation occurred in this process. The effect of solvents was also investigated and the results showed that ethanol was the most effcient solvent.

Qing-yun Wu, Long-long Ma, Jin-xing Long, Ri-yang Shu, Qi Zhang, Tie-jun Wang, Ying Xu. Depolymerization of Organosolv Lignin over Silica-alumina Catalysts[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 474-480. doi: 10.1063/1674-0068/29/cjcp1601017
Citation: Qing-yun Wu, Long-long Ma, Jin-xing Long, Ri-yang Shu, Qi Zhang, Tie-jun Wang, Ying Xu. Depolymerization of Organosolv Lignin over Silica-alumina Catalysts[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 474-480. doi: 10.1063/1674-0068/29/cjcp1601017
Reference (29)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return