Shan Ding, Li-gang Wei, Kun-lan Li, Ying-chong Ma. Solvatochromic Parameters and Preferential Solvation Behavior for Binary Mixtures of 1,3-Dialkylimidazolium Ionic Liquids with Water[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 497-507. doi: 10.1063/1674-0068/29/cjcp1601003
Citation: Shan Ding, Li-gang Wei, Kun-lan Li, Ying-chong Ma. Solvatochromic Parameters and Preferential Solvation Behavior for Binary Mixtures of 1,3-Dialkylimidazolium Ionic Liquids with Water[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 497-507. doi: 10.1063/1674-0068/29/cjcp1601003

Solvatochromic Parameters and Preferential Solvation Behavior for Binary Mixtures of 1,3-Dialkylimidazolium Ionic Liquids with Water

doi: 10.1063/1674-0068/29/cjcp1601003
  • Received Date: 2016-01-06
  • Rev Recd Date: 2016-03-15
  • Binary mixtures of 1,3-dialkylimidazolium based ionic liquids (ILs) and water were selected as solvent systems to investigate the solute-solvent and solvent-solvent interactions on the preferential solvation of solvatochromic indicators at 25℃. Empirical solvatochromic parameters, dipolarity/polarizability (π*), hydrogen-bond donor acidity (α), hydrogen-bond acceptor basicity (β), and Reichardt's polarity parameters (ETN) were measured from the ultraviolet-visible spectral shifts of 4-nitroaniline, 4-nitroanisole, and Reichardt's dye. The solvent properties of the IL-water mixtures were found to be influenced by IL type and IL mole fraction (xIL). All these studied systems showed the non-ideal behavior. The maximum deviation to ideality for the solvatochromic parameters can be obtained in the xIL range from 0.1 to 0.3. For most of the binary mixtures, the π* values showed the synergistic effects instead of the ETN, α and β values. The observed synergy extent was dependent on the studied systems, such as the dye indicator and IL type. A preferential solvation model was utilized to gather information on the molecular interactions in the mixtures. The dye indicator was preferentially solvated on the following trend: IL >IL-water complex >water.
  • 加载中
  • [1] N. V. Plechkova and K. R. Seddon, Chem. Soc. Rev. 37, 123 (2008).
    [2] T. L. Greaves and C. J. Drummond, Chem. Rev. 115, 11379 (2015).
    [3] O. Russina, A. Sferrazza, R. Caminiti, and A. Triolo, J. Phys. Chem. Lett. 5, 1738 (2014).
    [4] F. Huo, Z. Liu, and W. Wang, J. Phys. Chem. B 117, 11780 (2013).
    [5] R. Sharma and R. K. Mahajan, RSC Adv. 4, 748 (2014).
    [6] S. Khatun and E. W. Castner Jr., J. Phys. Chem. B 119, 9225 (2015).
    [7] Y. Zhao, J.Wang, H.Wang, Z. Li, X. Liu, and S. Zhang, J. Phys. Chem. B 119, 6686 (2015).
    [8] C. Reichardt, Chem. Rev. 94, 2319 (1994).
    [9] C. Reichardt and T. Welton, Solvents and Solvent E ects in Organic Chemistry, 4th Edn., Weinheim: Wiley-VCH, 132 (2010).
    [10] C. Reichardt, Pure Appl. Chem. 76, 1903 (2004).
    [11] R. W. Taft and M. J. Kamlet, J. Am. Chem. Soc. 98, 2886 (1976).
    [12] M. J. Kamlet and R. W. Taft, J. Am. Chem. Soc. 98, 377 (1976).
    [13] M. J. Kamlet, J. L. Addoud, and R. W. Taft, J. Am. Chem. Soc. 99, 6027 (1977).
    [14] T. Yokoyama, R. W. Taft, and M. J. Kamlet, J. Am. Chem. Soc. 98, 3233 (1976).
    [15] P. G. Jessop, D. A. Jessop, D. B. Fu, and L. Phan, Green Chem. 14, 1245 (2012).
    [16] V. Beniwal and A. Kumar, ChemPhysChem 16, 1026 (2015).
    [17] A. Ali, M. Ali, N. A. Malik, S. Uzair, and A. B. Khan, J. Chem. Eng. Data 59, 1755 (2014).
    [18] A. F. M. Cláudio, M. C. Neves, K. Shimizu, J. N. C. Lopes, M. G. Freire, and J. A. Coutinho, Green Chem. 17, 3948 (2015).
    [19] D. W. Kim, D. J. Hong, J. W. Seo, H. S. Kim, H. K. Kim, C. E. Song, and D. Y. Chi, J. Org. Chem. 69, 3186 (2004).
    [20] X. C. Kang, J. L. Zhang, W. T. Shang, T. B. Wu, P. Zhang, B. X. Han, Z. H. Wu, G. Mo, and X. Q. Xing, J. Am. Chem. Soc. 136, 3768 (2014).
    [21] T. V. Doherty, M. Mora-Pale, S. E. Foley, R. J. Linhardt, and J. S. Sordick, Green Chem. 12, 1967 (2010).
    [22] L. G. Wei, K. L. Li, Y. C. Ma, and X. Hou, Ind. Crop. Prod. 37, 227 (2012).
    [23] A. R. Harifi-Mood, A. Habibi-Yangjeh, and M. R. Gholami, J. Phys. Chem. B 110, 7073 (2006).
    [24] A. Sarkar and S. Pandey, J. Chem. Eng. Data 51, 2051 (2006).
    [25] C. G. Adam, M. V. Bravo, P. M. E. Mancini, and G. G. Fortunato, J. Phys. Org. Chem. 27, 841 (2014).
    [26] P. K. Nayak, A. P. Hathorne, and H. Bermudez, Phys. Chem. Chem. Phys. 15, 1806 (2013).
    [27] C. Laurence, P. Nicolet, M. T. Dalati, J. L. M. Abboud, and R. Notario, J. Phys. Chem. 98, 5807 (1994).
    [28] S. N. Baker, G. A. Baker, and F. V. Bright, Green Chem. 4, 165 (2002).
    [29] M. A. Ab Rani, A. Brant, L. Crowhurst, A. Dolan, M. Lui, N. H. Hassan, J. P. Hallett, P. A. Hunt, H. Niedermeyer, J. M. Perez-Arlandis, M. Schrems, T. Welton, and R. Wildinga, Phys. Chem. Chem. Phys. 13, 16831 (2011).
    [30] A.V. Ladesov, D. S. Kosyakov, K. G. Bogolitsyn, and N. S. Gorbova, Russ. J. Phys. Chem. A 89, 1814 (2015).
    [31] P. M. Mancini, G. G. Fortunato, C. G. Adam, and L. R. Vottero, J. Phys. Org. Chem. 21, 87 (2008).
    [32] V. Strehmel, R. Lungwitz, H. Rexhausen, and S. Spange, New J. Chem. 34, 2125 (2010).
    [33] Y. Cao, Y. Chen, X. Wang, and T. Mu, RSC Adv. 4, 5169 (2014).
    [34] M. L. C. J. Moita, A. F. S. Santos, J. F. C. C. Silva, and I. M. S. Lampreia, J. Chem. Eng. Data 57, 2702 (2012).
    [35] J. Shi, K. Balamurugan, R. Parthasarathi, N. Sathitsuksanoh, S. Zhang, V. Stavila, V. Subramanian, B. A. Simmons, and S. Sinqh, Green Chem. 16, 3830 (2014).
    [36] Y. T. Wang, L. G. Wei, K. L. Li, Y. C. Ma, N. N. Ma, S. Ding, L. L. Wang, D. Y. Zhao, B. Yan, W. Y. Wan, Q. Zhang, X. Wang, J. M. Wang, and H. Li, Bioresour. Technol. 170, 499 (2014).
    [37] M. G. Freire, C. M. S. S. Neves, I. M. Marrucho, J. A. P. Coutinho, and A. M. J. Fernandes, J. Phys. Chem. A 114, 3744 (2010).
    [38] L. K. J. Hauru, M. Hummel, A. W. T. King, I. Kilpelainen, and H. Sixta, Biomacromolecules 13, 2896 (2012).
    [39] L. Zhang, Z. Xu, Y. Wang, and H. Li, J. Phys. Chem. B 112, 6411 (2008).
    [40] R. D. Skwierczynski and K. A. Connors, J. Chem. Soc. Perkin Trans. 2, 467 (1994).
    [41] U. Buhvestov, F. Rived, C. Rafols, E. Bosch, and M. Roses, J. Phys. Org. Chem. 11, 185 (1998).
    [42] M. Roses, U. Buhvestov, C. Rafols, F. Rived, and E. Bosch, J. Chem. Soc. Perkin Trans. 2, 1341 (1997).
    [43] N. D. Khupse and A. Kumar, J. Phys. Chem. B 115, 711 (2011).
    [44] Y. Danten, M. I. Cabao, and M. Besnard, J. Phys. Chem. A 113, 2873 (2009).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(712) PDF downloads(736) Cited by()

Proportional views
Related

Solvatochromic Parameters and Preferential Solvation Behavior for Binary Mixtures of 1,3-Dialkylimidazolium Ionic Liquids with Water

doi: 10.1063/1674-0068/29/cjcp1601003

Abstract: Binary mixtures of 1,3-dialkylimidazolium based ionic liquids (ILs) and water were selected as solvent systems to investigate the solute-solvent and solvent-solvent interactions on the preferential solvation of solvatochromic indicators at 25℃. Empirical solvatochromic parameters, dipolarity/polarizability (π*), hydrogen-bond donor acidity (α), hydrogen-bond acceptor basicity (β), and Reichardt's polarity parameters (ETN) were measured from the ultraviolet-visible spectral shifts of 4-nitroaniline, 4-nitroanisole, and Reichardt's dye. The solvent properties of the IL-water mixtures were found to be influenced by IL type and IL mole fraction (xIL). All these studied systems showed the non-ideal behavior. The maximum deviation to ideality for the solvatochromic parameters can be obtained in the xIL range from 0.1 to 0.3. For most of the binary mixtures, the π* values showed the synergistic effects instead of the ETN, α and β values. The observed synergy extent was dependent on the studied systems, such as the dye indicator and IL type. A preferential solvation model was utilized to gather information on the molecular interactions in the mixtures. The dye indicator was preferentially solvated on the following trend: IL >IL-water complex >water.

Shan Ding, Li-gang Wei, Kun-lan Li, Ying-chong Ma. Solvatochromic Parameters and Preferential Solvation Behavior for Binary Mixtures of 1,3-Dialkylimidazolium Ionic Liquids with Water[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 497-507. doi: 10.1063/1674-0068/29/cjcp1601003
Citation: Shan Ding, Li-gang Wei, Kun-lan Li, Ying-chong Ma. Solvatochromic Parameters and Preferential Solvation Behavior for Binary Mixtures of 1,3-Dialkylimidazolium Ionic Liquids with Water[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 497-507. doi: 10.1063/1674-0068/29/cjcp1601003
Reference (44)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return