Lu Li, Hong-jun Fan, Hao-quan Hu. Assessment of Contemporary Theoretical Methods for Bond Dissociation Enthalpies[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 453-461. doi: 10.1063/1674-0068/29/cjcp1512266
Citation: Lu Li, Hong-jun Fan, Hao-quan Hu. Assessment of Contemporary Theoretical Methods for Bond Dissociation Enthalpies[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 453-461. doi: 10.1063/1674-0068/29/cjcp1512266

Assessment of Contemporary Theoretical Methods for Bond Dissociation Enthalpies

doi: 10.1063/1674-0068/29/cjcp1512266
  • Received Date: 2015-12-30
  • Rev Recd Date: 2016-01-25
  • The density functional theory (DFT) is the most popular method for evaluating bond dis-sociation enthalpies (BDEs) of most molecules. Thus, we are committed to looking for alternative methods that can balance the computational cost and higher precision to the best for large systems. The performance of DFT, double-hybrid DFT, and high-level com-posite methods are examined. The tested sets contain monocyclic and polycyclic aromatic molecules, branched hydrocarbons, small inorganic molecules, etc. The results show that the mPW2PLYP and G4MP2 methods achieve reasonable agreement with the benchmark values for most tested molecules, and the mean absolute deviations are 2.43 and 1.96 kcal/mol after excluding the BDEs of branched hydrocarbons. We recommend the G4MP2 is the most appropriate method for small systems (atoms number ≤20); the double-hybrid DFT methods are advised for large aromatic molecules in medium size (20 ≤atoms number ≤50), and the double-hybrid DFT methods with empirical dispersion correction are recommended for long-chain and branched hydrocarbons in the same size scope; the DFT methods are advised to apply for large systems (atoms number ≥50), and the M06-2X and B3P86 methods are also favorable. Moreover, the di erences of optimized geometry of different methods are discussed and the effects of basis sets for various methods are investigated.
  • 加载中
  • [1] O. Dorofeeva, V. P. Novikov, and D. B. Neumann, J. Phys. Chem. Ref. Data 30, 475 (2001).
    [2] S. J. Blanksby and G. B. Ellison, Acc. Chem. Res. 36, 255 (2003).
    [3] J. Berkowitz, G. B. Ellison, and D. Gutman, J. Phys. Chem 98, 2744 (1994).
    [4] W. Zheng, W. Xu, Y. Wang, and Z. Chen, Comp. Theor. Chem. 1027, 116 (2014).
    [5] A. Vagánek, J. Rimarčík, M. Ilčin, P. Škorňa, V. Lukeš, and E. Klein, Comp. Theor. Chem. 1014, 60 (2013).
    [6] E. R. Johnson, O. J. Clarkin, and G. A. DiLabio, J. Phys. Chem. A 107, 9953 (2003).
    [7] X. Q. Yao, X. J. Hou, H. Jiao, H. W. Xiang, and Y. W. Li, J. Phys. Chem. A 107, 9991 (2003).
    [8] I. I. Marochkin and O. V. Dorofeeva, Comp. Theor. Chem. 991, 182 (2012).
    [9] G. P. F. Wood, D. Moran, R. Jacob, and L. Radom, J. Phys. Chem. A 109, 6318 (2005).
    [10] H. Z. Yu, F. Fu, L. Zhang, Y. Fu, Z. M. Dang, and J. Shi, Phys. Chem. Chem. Phys. 16, 20964 (2014).
    [11] W. R. Zheng, J. L. Xu, T. Huang, Z. C. Chen, and Q. Yang, Comp. Theor. Chem. 968, 1 (2011).
    [12] W. R. Zheng, Z. C. Chen, and W. X. Xu, Chin. J. Chem. Phys. 26, 541 (2013).
    [13] B. Wang, Y. Fu, H. Z. Yu, and J. Shi, Chin. J. Chem. Phys. 27, 640 (2014).
    [14] T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 8, 4398 (2006).
    [15] L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 123, 124107 (2005).
    [16] S. Grimme, J. Chem. Phys. 124, 034108 (2006).
    [17] B. Chan and L. Radom, J. Phys. Chem. A 116, 4975 (2012).
    [18] D. J. Henry, C. J. Parkinson, P. M. Mayer, and L. Radom, J. Phys. Chem. A 105, 6750 (2001).
    [19] K. S. Song, Y. H. Cheng, Y. Fu, L. Liu, X. S. Li, and Q. X. Guo, J. Phys. Chem. A 106, 6651 (2002).
    [20] J. Cioslowski, G. Liu, M. Martinov, P. Piskorz, and D. Moncrieff, J. Am. Chem. Soc. 118, 5261 (1996).
    [21] L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. 109, 7764 (1998).
    [22] J. W. Ochterski, G. A. Petersson, and K. B. Wiberg, J. Am. Chem. Soc. 117, 11299 (1995).
    [23] A. G. Baboul, L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 110, 7650 (1999).
    [24] S. W. Zhao, L. Liu, Y. Fu, and Q. X. Guo, J. Phys. Org. Chem. 18, 353 (2005).
    [25] L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 126, 084108 (2007).
    [26] A. S. Menon, G. P. F. Wood, D. Moran, and L. Radom, J. Phys. Chem. A 111, 13638 (2007).
    [27] A. K. Haritash and C. P. Kaushik, J Hazard. Mater 169, 1 (2009).
    [28] S. K. Samanta, O. V. Singh, and R. K. Jain, Trends Biotechnol. 20, 243 (2002).
    [29] W. Wilcke, J. Soil Sci. Plant Nut. 163, 229 (2000).
    [30] S. Wauters and G. B. Marin, Chem. Eng. J. 82, 267 (2001).
    [31] K. Hemelsoet, V. Van Speybroeck, D. Moran, G. B. Marin, L. Radom, and M. Waroquier, J. Phys. Chem. A 110, 13624 (2006).
    [32] V. Van Speybroeck, K. Hemelsoet, B. Minner, G. B. Marin, and M. Waroquier, Mol. Simul. 33, 879 (2007).
    [33] M. F. Denissenko, A. Pao, M. S. Tang, and G. P. Pfeifer, Science 274, 430 (1996).
    [34] K. Hemelsoet, V. V. Speybroeck, and M. Waroquier, J. Phys. Chem. A 112, 13566 (2008).
    [35] X. Q. Yao, X. J. Hou, G. S. Wu, Y. Y. Xu, H. W. Xiang, H. Jiao, and Y. W. Li, J. Phys. Chem. A 106, 7184 (2002).
    [36] C. Barckholtz, T. A. Barckholtz, and C. M. Hadad, J. Am. Chem. Soc. 121, 491 (1999).
    [37] V. Van Speybroeck, G. B. Marin, and M. Waroquier, ChemPhysChem 7, 2205 (2006).
    [38] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
    [39] Y. Zhao and D. Truhlar, Theor. Chem. Account. 120, 215 (2008).
    [40] T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007).
    [41] L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 127, 124105 (2007).
    [42] G. E. Scuseria, C. L. Janssen, and H. F. Schaefer, J. Chem. Phys. 89, 7382 (1988).
    [43] J. A. Pople, M. Headgordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987).
    [44] J. Shi, X. Y. Huang, J. P. Wang, and R. Li, J. Phys. Chem. A 114, 6263 (2010).
    [45] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,Ö O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.02, Wallingford CT: Gaussian Inc., (2009).
    [46] J. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
    [47] R. A. Kendall, J. T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
    [48] D. E. Woon and J. T. H. Dunning, J. Chem. Phys. 98, 1358 (1993).
    [49] L. Li, H. J. Fan, and H. Q. Hu, Fuel 153, 70 (2015).
    [50] W. C. McKee and P. V. Schleyer, J. Am. Chem. Soc. 135, 13008 (2013).
    [51] M. D. Wodrich, W. C. McKee, and P. V. Schleyer, J. Org. Chem. 76, 2439 (2011).
    [52] R. J. O'Reilly, A. Karton, and L. Radom, Int. J. Quantum. Chem. 112, 1862 (2012).
    [53] Y. Feng, L. Liu, J. T. Wang, S. W. Zhao, and Q. X. Guo, J. Org. Chem. 69, 3129 (2004).
    [54] Z. Tian, A. Fattahi, L. Lis, and S. R. Kass, J. Am. Chem. Soc. 128, 17087 (2006).
    [55] E. I. Izgorodina, M. L. Coote, and L. Radom, J. Phys. Chem. A 109, 7558 (2005).
    [56] C. J. Hayes and C. M. Hadad, J. Phys. Chem. A 113, 12370 (2009).
    [57] M. L. Coote, A. Pross, and L. Radom, Org. Lett. 5, 4689 (2003).
    [58] J. P. Senosiain, J. H. Han, C. B. Musgrave, and D. M. Golden, Faraday Disc. 119, 173 (2002).
    [59] D. Kaur, R. P. Kaur, and R. Kaur, J. Mol. Struct.: THEOCHEM 803, 95 (2007).
    [60] K. Hemelsoet, F. Van Durme, V. Van Speybroeck, M. F. Reyniers, and M. Waroquier, J. Phys. Chem. A 114, 2864 (2010).
    [61] P. C. Nam, M. T. Nguyen, and A. K. Chandra, J. Phys. Chem. A 109, 10342 (2005).
    [62] Y. Feng, L. Liu, J. T. Wang, H. Huang, and Q. X. Guo, J. Chem. Inf. Comput. Sci. 43, 2005 (2003).
    [63] A. A. Zavitsas, D. W. Rogers, and N. Matsunaga, J. Org. Chem. 75, 5697 (2010).
    [64] D. A. Robaugh and S. E. Stein, J. Am. Chem. Soc. 108, 3224 (1986).
    [65] K. A. Peterson, J. Chem. Phys. 119, 11099 (2003).
    [66] B. Metz, H. Stoll, and M. Dolg, J. Chem. Phys. 113, 2563 (2000).
    [67] K. A. Peterson, B. C. Shepler, D. Figgen, and H. Stoll, J. Phys. Chem. A 110, 13877 (2006).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(782) PDF downloads(594) Cited by()

Proportional views
Related

Assessment of Contemporary Theoretical Methods for Bond Dissociation Enthalpies

doi: 10.1063/1674-0068/29/cjcp1512266

Abstract: The density functional theory (DFT) is the most popular method for evaluating bond dis-sociation enthalpies (BDEs) of most molecules. Thus, we are committed to looking for alternative methods that can balance the computational cost and higher precision to the best for large systems. The performance of DFT, double-hybrid DFT, and high-level com-posite methods are examined. The tested sets contain monocyclic and polycyclic aromatic molecules, branched hydrocarbons, small inorganic molecules, etc. The results show that the mPW2PLYP and G4MP2 methods achieve reasonable agreement with the benchmark values for most tested molecules, and the mean absolute deviations are 2.43 and 1.96 kcal/mol after excluding the BDEs of branched hydrocarbons. We recommend the G4MP2 is the most appropriate method for small systems (atoms number ≤20); the double-hybrid DFT methods are advised for large aromatic molecules in medium size (20 ≤atoms number ≤50), and the double-hybrid DFT methods with empirical dispersion correction are recommended for long-chain and branched hydrocarbons in the same size scope; the DFT methods are advised to apply for large systems (atoms number ≥50), and the M06-2X and B3P86 methods are also favorable. Moreover, the di erences of optimized geometry of different methods are discussed and the effects of basis sets for various methods are investigated.

Lu Li, Hong-jun Fan, Hao-quan Hu. Assessment of Contemporary Theoretical Methods for Bond Dissociation Enthalpies[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 453-461. doi: 10.1063/1674-0068/29/cjcp1512266
Citation: Lu Li, Hong-jun Fan, Hao-quan Hu. Assessment of Contemporary Theoretical Methods for Bond Dissociation Enthalpies[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 453-461. doi: 10.1063/1674-0068/29/cjcp1512266
Reference (67)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return