Chang-wu Dong, Jia-xing Liu, Fang-fang Li, Feng-yan Wang. Laser Ablation Atomic Beam Apparatus with Time-Sliced Velocity Map Imaging for Studying State-to-State Metal Reaction Dynamics[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 99-104. doi: 10.1063/1674-0068/29/cjcp1512261
Citation: Chang-wu Dong, Jia-xing Liu, Fang-fang Li, Feng-yan Wang. Laser Ablation Atomic Beam Apparatus with Time-Sliced Velocity Map Imaging for Studying State-to-State Metal Reaction Dynamics[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 99-104. doi: 10.1063/1674-0068/29/cjcp1512261

Laser Ablation Atomic Beam Apparatus with Time-Sliced Velocity Map Imaging for Studying State-to-State Metal Reaction Dynamics

doi: 10.1063/1674-0068/29/cjcp1512261
  • Received Date: 2015-12-03
  • Rev Recd Date: 2016-01-04
  • We report a newly constructed laser ablation crossed molecular beam apparatus, equipped with time-sliced velocity map imaging technique, to study state-to-state metal atom reaction dynamics. Supersonic metal atomic beam is generated by laser vaporization of metal rod, and free expansion design without gas flow channel has been employed to obtain a good quality of metal atomic beam. We have chosen the crossed-beam reaction Al+O2 to test the performance of the new apparatus. Two-rotational-states selected AlO(X2+, v=0, N and N+14) products can be imaged via P(N) and R(N+14) branches of the Δv=1 band at the same wavelength, during (1+1) resonance-enhanced multi-photon ionization through the AlO(D2+) intermediate state. In our experiment at 244.145 nm for simultaneous transitions of P(15) and R(29) branch, two rings in slice image were clearly distinguishable, corresponding to the AlO(v=0, N=15) and AlO(v=0, N=29) states respectively. The energy difference between the two rotational levels is 403 cm-1. The success of two states resolved in our apparatus suggests a better collisional energy resolution compared with the recent research study [J. Chem. Phys. 140, 214304 (2014)].
  • 加载中
  • [1] M. Costes, C. Naulin, G. Dorthe, C. Vaucamps, and G. Nouchi, Faraday Discuss. 84, 75(1987).
    [2] P. A. Willis, H. U. Stauffer, R. Z. Hinrichs, and H. F. Davis, Rev. Sci. Instrum. 70, 2606(1999).
    [3] K. Honma, J. Chem. Phys. 119, 3641(2003).
    [4] M. A. Duncan, Rev. Sci. Instrum. 83, 041101(2012).
    [5] T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, J. Chem. Phys. 74, 6511(1981).
    [6] C. Naulin and M. Costes, Chem. Phys. Lett. 310, 231(1999).
    [7] P. J. Dagdigian, H. W. Cruse, and R. N. Zare, J. Chem. Phys. 62, 1824(1975).
    [8] L. Pasternack and P. J. Dagdigian, J. Chem. Phys. 67, 3854(1977).
    [9] K. M. Chen, C. H. Sung, J. L. Chang, T. H. Chung, and K. H. Lee, Chem. Phys. Lett. 240, 17(1995).
    [10] K. Liu and J. M. Parson, J. Chem. Phys. 67, 1814(1977).
    [11] H. W. Cruse, P. J. Dagdigia, and R. N. Zare, Faraday Discuss. 55, 277(1973).
    [12] K. Honma and Y. Matsumoto, Phys. Chem. Chem. Phys. 13, 8236(2011).
    [13] K. Honma and Y. Matsumoto, J. Chem. Phys. 136, 034301(2012).
    [14] K. Honma, K. Miyashita, and Y. Matsumoto, J. Chem. Phys. 140, 214304(2014).
    [15] C. R. Gebhardt, T. P. Rakitzis, P. C. Samartzis, V. Ladopoulos, and T. N. Kitsopoulos, Rev. Sci. Instrum. 72, 3848(2001).
    [16] J. J. Lin, J. Zhou, W. Shiu, and K. Liu, Rev. Sci. Instrum. 74, 2495(2003).
    [17] M. N. Ashfold, N. H. Nahler, A. J. Orr-Ewing, O. P. Vieuxmaire, R. L. Toomes, T. N. Kitsopoulos, I. A. Garcia, D. A. Chestakov, S. M. Wu, and D. H. Parker, Phys. Chem. Chem. Phys. 8, 26(2006).
    [18] C. Naulin and M. Costes, J. Phys. Chem. 98, 5593(1994).
    [19] M. Ishida, T. Higashiyama, Y. Matsumoto, and K. Honma, J. Chem. Phys. 122, 204312(2005).
    [20] P. Jansen, D. W. Chandler, and K. E. Strecker, Rev. Sci. Instrum. 80, 083105(2009).
    [21] U. Even, Adv. Chem. 2014, 1(2014).
    [22] B. Y. Chang, R. C. Hoetzlein, J. A. Mueller, J. D. Geiser, and P. L. Houston, Rev. Sci. Instrum. 69, 1665(1998).
    [23] T. Wang, J. Chen, T. Yang, C. Xiao, Z. Sun, L. Huang, D. Dai, X. Yang, and D. H. Zhang, Science 342, 1499(2013).
    [24] T. Wang, T. Yang, C. Xiao, D. Dai, and X. Yang, J. Phys. Chem. Lett. 4, 368(2013).
    [25] A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum. 68, 3477(1997).
    [26] S. D. Le Picard, A. Canosa, D. Travers, D. Chastaing, B. R. Rowe, and T. Stoecklin, J. Phys. Chem. A 101, 9988(1997).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1081) PDF downloads(797) Cited by()

Proportional views
Related

Laser Ablation Atomic Beam Apparatus with Time-Sliced Velocity Map Imaging for Studying State-to-State Metal Reaction Dynamics

doi: 10.1063/1674-0068/29/cjcp1512261

Abstract: We report a newly constructed laser ablation crossed molecular beam apparatus, equipped with time-sliced velocity map imaging technique, to study state-to-state metal atom reaction dynamics. Supersonic metal atomic beam is generated by laser vaporization of metal rod, and free expansion design without gas flow channel has been employed to obtain a good quality of metal atomic beam. We have chosen the crossed-beam reaction Al+O2 to test the performance of the new apparatus. Two-rotational-states selected AlO(X2+, v=0, N and N+14) products can be imaged via P(N) and R(N+14) branches of the Δv=1 band at the same wavelength, during (1+1) resonance-enhanced multi-photon ionization through the AlO(D2+) intermediate state. In our experiment at 244.145 nm for simultaneous transitions of P(15) and R(29) branch, two rings in slice image were clearly distinguishable, corresponding to the AlO(v=0, N=15) and AlO(v=0, N=29) states respectively. The energy difference between the two rotational levels is 403 cm-1. The success of two states resolved in our apparatus suggests a better collisional energy resolution compared with the recent research study [J. Chem. Phys. 140, 214304 (2014)].

Chang-wu Dong, Jia-xing Liu, Fang-fang Li, Feng-yan Wang. Laser Ablation Atomic Beam Apparatus with Time-Sliced Velocity Map Imaging for Studying State-to-State Metal Reaction Dynamics[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 99-104. doi: 10.1063/1674-0068/29/cjcp1512261
Citation: Chang-wu Dong, Jia-xing Liu, Fang-fang Li, Feng-yan Wang. Laser Ablation Atomic Beam Apparatus with Time-Sliced Velocity Map Imaging for Studying State-to-State Metal Reaction Dynamics[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 99-104. doi: 10.1063/1674-0068/29/cjcp1512261
Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return