Min-jun Feng, Fan Yang, Jian-ping Wang. Vibrational and Structural Dynamics of Mn(CO)5Br and Re(CO)5Br Examined Using Nonlinear Infrared Spectroscopy[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 81-86. doi: 10.1063/1674-0068/29/cjcp1512253
Citation: Min-jun Feng, Fan Yang, Jian-ping Wang. Vibrational and Structural Dynamics of Mn(CO)5Br and Re(CO)5Br Examined Using Nonlinear Infrared Spectroscopy[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 81-86. doi: 10.1063/1674-0068/29/cjcp1512253

Vibrational and Structural Dynamics of Mn(CO)5Br and Re(CO)5Br Examined Using Nonlinear Infrared Spectroscopy

doi: 10.1063/1674-0068/29/cjcp1512253
  • Received Date: 2015-12-15
  • Rev Recd Date: 2016-01-13
  • Vibrational and structural dynamics of two transition metal carbonyl complexes, Mn(CO)5Br and Re(CO)5Br were examined in DMSO, using ultrafast infrared pump-probe spectroscopy, steady-state linear infrared spectroscopy and quantum chemistry computations. Two carbonyl stretching vibrational modes (a low-frequency A1 mode and two high-frequency degenerate E modes) were used as vibrational probes. Central metal effect on the CO bond order and force constant was responsible for a larger E-A1 frequency separation and a generally more red-shifted E and A1 peaks in the Re complex than in the Mn complex. A generally broader spectral width for the A1 mode than the E mode is believed to be partially due to vibrational lifetime effect. Vibrational mode-dependent diagonal anharmonicity was observed in transient infrared spectra, with a generally smaller anharmonicity found for the E mode in both the Mn and Re complexes.
  • 加载中
  • [1] M. Chergui, Acc. Chem. Res. 48, 801(2015).
    [2] J. C. Owrutsky, D. Raftery, and R. M. Hochstrasser, Annu. Rev. Phys. Chem. 45, 519(1994).
    [3] M. D. Fayer, Annu. Rev. Phys. Chem. 21(2009).
    [4] L. M. Kiefer, J. T. King, and K. J. Kubarych, Acc. Chem. Res. 48, 1123(2015).
    [5] D. Kariuki and S. F. A. Kettle, Spectrochim. Acta A 34, 563(1978).
    [6] J. K. McCusker, Acc. Chem. Res. 36, 876(2003).
    [7] E. J. Heilweil, R. R. Cavanagh, and J. C. Stephenson, Chem. Phys. Lett. 134, 181(1987).
    [8] E. J. Heilweil, R. R. Cavanagh, and J. C. Stephenson, J. Chem. Phys. 89, 230(1988).
    [9] D. Li, F. Yang, C. Han, J. Zhao, and J. Wang, J. Phys. Chem. Lett. 3, 3665(2012).
    [10] F. Yang, P. Yu, J. Zhao, and J. Wang, ChemPhysChem 14, 2497(2013).
    [11] G. Fleming, Chemical Applications of Ultrafast Spectroscopy, 1st Edn., Oxford:Oxford University Press (1986).
    [12] E. Cancès, B. Mennucci, and J. Tomasi, J. Chem. Phys. 107, 3032(1997).
    [13] B. Mennucci and J. Tomasi, J. Chem. Phys. 106, 5151(1997).
    [14] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.02, Wallingford, CT:Gaussian Inc., (2009).
    [15] Y. F. Hu, G. M. Bancroft, and K. H. Tan, Inorg. Chem. 39, 1255(2000).
    [16] G. L. Miessler, P. J. Fischer, and D. A. Tarr, Inorganic Chemistry, 5th Edn., New Jersey:Pearson (2013).
    [17] F. Yang, P. Yu, J. Zhao, J. Shi, and J. Wang, Phys. Chem. Chem. Phys. 17, 14542(2015).
    [18] V. Barone, J. Chem. Phys. 122, 014108/1(2005).
    [19] J. Wang and R. M. Hochstrasser, J. Phys. Chem. B 110, 3798(2006).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(897) PDF downloads(903) Cited by()

Proportional views
Related

Vibrational and Structural Dynamics of Mn(CO)5Br and Re(CO)5Br Examined Using Nonlinear Infrared Spectroscopy

doi: 10.1063/1674-0068/29/cjcp1512253

Abstract: Vibrational and structural dynamics of two transition metal carbonyl complexes, Mn(CO)5Br and Re(CO)5Br were examined in DMSO, using ultrafast infrared pump-probe spectroscopy, steady-state linear infrared spectroscopy and quantum chemistry computations. Two carbonyl stretching vibrational modes (a low-frequency A1 mode and two high-frequency degenerate E modes) were used as vibrational probes. Central metal effect on the CO bond order and force constant was responsible for a larger E-A1 frequency separation and a generally more red-shifted E and A1 peaks in the Re complex than in the Mn complex. A generally broader spectral width for the A1 mode than the E mode is believed to be partially due to vibrational lifetime effect. Vibrational mode-dependent diagonal anharmonicity was observed in transient infrared spectra, with a generally smaller anharmonicity found for the E mode in both the Mn and Re complexes.

Min-jun Feng, Fan Yang, Jian-ping Wang. Vibrational and Structural Dynamics of Mn(CO)5Br and Re(CO)5Br Examined Using Nonlinear Infrared Spectroscopy[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 81-86. doi: 10.1063/1674-0068/29/cjcp1512253
Citation: Min-jun Feng, Fan Yang, Jian-ping Wang. Vibrational and Structural Dynamics of Mn(CO)5Br and Re(CO)5Br Examined Using Nonlinear Infrared Spectroscopy[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 81-86. doi: 10.1063/1674-0068/29/cjcp1512253
Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return