Qun Wang, Meng-hao Wang, Ke-feng Wang, Yong-chi Zhao, Wei-li Wang, Li-ping Zhang. Interactions of Anionic and Neutral Serine with Pure and Metal-doped Graphene Studied by Density Functional Theory[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 437-444. doi: 10.1063/1674-0068/29/cjcp1512250
Citation: Qun Wang, Meng-hao Wang, Ke-feng Wang, Yong-chi Zhao, Wei-li Wang, Li-ping Zhang. Interactions of Anionic and Neutral Serine with Pure and Metal-doped Graphene Studied by Density Functional Theory[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 437-444. doi: 10.1063/1674-0068/29/cjcp1512250

Interactions of Anionic and Neutral Serine with Pure and Metal-doped Graphene Studied by Density Functional Theory

doi: 10.1063/1674-0068/29/cjcp1512250
  • Received Date: 2015-12-07
  • Rev Recd Date: 2016-04-27
  • We present a theoretical study of interactions of anionic and neutral serine (Ser) on pure or metal-doped graphene surfaces using density functional theory calculations. Interactions of both types of Ser with the pure graphene surface show weak non-covalent interactions due to the formation of -COOH…π, -COO-…π, and -OH…π interactions. On metaldoped graphene, covalent interactions to the surface dominate, due to the formation of strong metal-O and O-metal-O interactions. Furthermore, the doped Fe, Cr, Mn, Al, or Ti enhances the ability of graphene to attract both types of Ser by a combination of the adsorption energy, the density of states, the Mulliken atomic charges, and differences of electron density. At the same time, the interaction strengths of anionic Ser on various graphene surfaces are stronger than those of neutral Ser. These results provide useful insights for the rational design and development of graphene-based sensors for the two forms of Ser by introducing appropriate doped atoms. Ti and Fe are suggested to be the best choices among all doped atoms for the anionic Ser and neutral Ser, respectively.
  • 加载中
  • [1] M. J. Allen, V. C. Tung, and R. B. Kaner, Chem. Rev. 110, 132 (2009).
    [2] Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, Electroanalysis 22, 1027 (2010).
    [3] J. Y. Liu, X. X. Yu, G. H. Zhang, Y. K. Wu, K. Zhang, N. Pan, and X. P. Wang, Chin. J. Chem. Phys. 26, 225 (2013).
    [4] X. J. Li, X. X. Yu, J. Y. Liu, X. D. Fan, K. Zhang, H. B. Cai, N. Pan, and X. P. Wang, Chin. J. Chem. Phys. 25, 325 (2012).
    [5] C. Cazorla, Thin Solid Films 518, 6951 (2010).
    [6] Z. Zhang, H. Jia, F. Ma, P. Han, X. Liu, and B. Xu, J. Mol. Model. 17, 649 (2011).
    [7] F. Ma, Z. X. Zhang, H. S. Jia, X. G. Liu, Y. Y. Hao, and B. S. Xu, J. Mol. Struc.: THEOCHEM 955, 134 (2010).
    [8] M. Chi and Y. P. Zhao, Comput. Mater. Sci. 46, 1085 (2009).
    [9] Z. Ao, J. Yang, S. Li, and Q. Jiang, Chem. Phys. Lett. 461, 276 (2008).
    [10] O. Leenaerts, B. Partoens, and F. Peeters, Phys. Rev. B 77, 125416 (2008).
    [11] H. P. Zhang, X. G. Luo, X. Y. Lin, X. Y. Lu, Y. Leng, and H. T. Song, Appl. Surf. Sci. 283, 559 (2013).
    [12] S. Gronert and R. A. Ohair, J. Am. Chem. Soc. 117, 2071 (1995).
    [13] M. Pecul, Chem. Phys. Lett. 418, 1 (2006).
    [14] Y. N. Guo, X. Lu. J. Weng, and Y. Leng, J. Phys. Chem. C 117, 5708 (2013).
    [15] M. H. Wang, Y. N. Guo, Q. Wang, J. J. Huang, X. Lu, K. F. Wang, H. P. Zhang, and Y. Leng, Chem. Phys. Lett. 599, 86 (2014).
    [16] H. P. Zhang, X. G. Luo, X. Y. Lin, Y. P. Zhang, P. P. Tang, X. Lu, and Y. H. Tang, J. Mol. Graph. Model. 61, 224 (2015).
    [17] C. Thierfelder, M. Witte, S. Blankenburg, E. Rauls, and M. G. Schmidt, Surf. Sci. 605, 746 (2011).
    [18] F. Nicolas, F. Yves, C. Yannick, M. Julien, and A. Alain, Phys. Chem. Chem. Phys. 16, 1957 (2014).
    [19] B. Delley, J. Chem. Phys. 92, 508 (1990).
    [20] B. Delley, J. Chem. Phys. 113, 7756 (2000).
    [21] I. S. Jeon, D. S. Ahn, S. W. Park, L. Sungyul, and K. Bongsoo, Int. J. Quantum Chem. 101, 55 (2005)
    [22] B. Delley, Phys. Rev. B 66, 155 (2002).
    [23] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    [24] F. Ortmann, F. Bechstedt, and W. G. Schmidt, Phys. Rev. B Condens. Mat. 73, 20 (2006).
    [25] B. Wanno and C. Tabtimsai, Superlattice. Microst. 67, 110 (2013).
    [26] H. P. Zhang, W. D. He, X. G. Luo, X. Y. Lin, and X. Lu, J. Mol. Model. 20, 1 (2014).
    [27] H. P. Zhang, X. G. Luo, X. Y. Lin, X. Lu, and Y. Leng, Int. J. Hydrogen Energ. 38, 14269 (2013).
    [28] J. Y. Dai and J. M. Yuan, Phys. Rev. B 81, 2149 (2010).
    [29] N. Mohan, K. P. Vijayalakshmi, N. Koga, and C. H. Suresh, J. Comput. Chem. 31, 2874 (2010).
    [30] M. Brandl, M. S. Weiss, A. Jabs, J. Suhnel, and R. Hilgenfeld, J. Mol. Biol. 307, 357 (2001).
    [31] X. Y. Liu and J. M. Zhang, Appl. Surf. Sci. 293, 216 (2014).
    [32] N. Ding, X. Q. Lu, and C. M. L. Wu, Comput. Mater. Sci. 51, 141 (2012).
    [33] B. Xiao, J. Xing, S. Ding, and W. Su, Physica B 403, 1723 (2008).
    [34] M. Rajarajeswari, K. Iyakutti, and Y. Kawazoe, Chem. Phys. Lett. 511, 299 (2011).
    [35] M. Rajarajeswari, K. Iyakutti, and Y. Kawazoe, J. Mol. Model. 18, 771 (2012).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(933) PDF downloads(622) Cited by()

Proportional views
Related

Interactions of Anionic and Neutral Serine with Pure and Metal-doped Graphene Studied by Density Functional Theory

doi: 10.1063/1674-0068/29/cjcp1512250

Abstract: We present a theoretical study of interactions of anionic and neutral serine (Ser) on pure or metal-doped graphene surfaces using density functional theory calculations. Interactions of both types of Ser with the pure graphene surface show weak non-covalent interactions due to the formation of -COOH…π, -COO-…π, and -OH…π interactions. On metaldoped graphene, covalent interactions to the surface dominate, due to the formation of strong metal-O and O-metal-O interactions. Furthermore, the doped Fe, Cr, Mn, Al, or Ti enhances the ability of graphene to attract both types of Ser by a combination of the adsorption energy, the density of states, the Mulliken atomic charges, and differences of electron density. At the same time, the interaction strengths of anionic Ser on various graphene surfaces are stronger than those of neutral Ser. These results provide useful insights for the rational design and development of graphene-based sensors for the two forms of Ser by introducing appropriate doped atoms. Ti and Fe are suggested to be the best choices among all doped atoms for the anionic Ser and neutral Ser, respectively.

Qun Wang, Meng-hao Wang, Ke-feng Wang, Yong-chi Zhao, Wei-li Wang, Li-ping Zhang. Interactions of Anionic and Neutral Serine with Pure and Metal-doped Graphene Studied by Density Functional Theory[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 437-444. doi: 10.1063/1674-0068/29/cjcp1512250
Citation: Qun Wang, Meng-hao Wang, Ke-feng Wang, Yong-chi Zhao, Wei-li Wang, Li-ping Zhang. Interactions of Anionic and Neutral Serine with Pure and Metal-doped Graphene Studied by Density Functional Theory[J]. Chinese Journal of Chemical Physics , 2016, 29(4): 437-444. doi: 10.1063/1674-0068/29/cjcp1512250
Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return