Li Fu, Shun-li Chen, Wei Gan, Hong-fei Wang. Cross-Propagation Sum-Frequency Generation Vibrational Spectroscopy[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 70-80. doi: 10.1063/1674-0068/29/cjcp1512248
Citation: Li Fu, Shun-li Chen, Wei Gan, Hong-fei Wang. Cross-Propagation Sum-Frequency Generation Vibrational Spectroscopy[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 70-80. doi: 10.1063/1674-0068/29/cjcp1512248

Cross-Propagation Sum-Frequency Generation Vibrational Spectroscopy

doi: 10.1063/1674-0068/29/cjcp1512248
  • Received Date: 2015-12-02
  • Rev Recd Date: 2015-12-28
  • Here we report the theory formulation and the experiment realization of sum-frequency generation vibrational spectroscopy (SFG-VS) in the cross-propagation (XP) geometry or configuration. In the XP-SFG-VS, the visible and the infrared (IR) beams in the SFG experiment are delivered to the same location on the surface from visible and IR incident planes perpendicular to each other, avoiding the requirement to have windows or optics to be transparent to both the visible and IR frequencies. Therefore, the XP geometry is applicable to study surfaces in the enclosed vacuum or high pressure chambers with far infrared (FIR) frequencies that can directly access the metal oxide and other lower frequency surface modes, with much broader selection of visible and IR transparent window materials. The potential applications include surface science, material science, fundamental catalytic sciences, as well as low temperature molecular sciences, etc.
  • 加载中
  • [1] H. W. K. Tom, Studies of Surfaces Using Optical Second-harmonic Generation, Ph.D. Dissertation, Berkeley:University of California, (1984).
    [2] Y. R. Shen, Nature 337, 519(1989).
    [3] K. B. Eisenthal, Chem. Rev. 96, 1343(1996).
    [4] G. A. Somorjai and G. Rupprechter, J. Phys. Chem. B 103, 1623(1999).
    [5] M. Buck and M. Himmelhaus, J. Vacu. Sci. Tech. A 19, 2717(2001).
    [6] C. S. Tian and Y. R. Shen, Surf. Sci. Rep. 69, 105(2014).
    [7] E. C. Y. Yan, L. Fu, Z. Wang, and W. Liu, Chem. Rev. 114, 8471(2014).
    [8] H. Arnolds and M. Bonn, Surf. Sci. Rep. 65, 45(2010).
    [9] Y. R. Shen, Annu. Rev. Phys. Chem. 64, 129(2013).
    [10] H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, Int. Rev. Phys. Chem. 24, 191(2005).
    [11] H. F. Wang, L. Velarde, W. Gan, and L. Fu, Annu. Rev. Phys. Chem. 66, 189(2015).
    [12] L. Velarde and H. F. Wang, Phys. Chem. Chem. Phys. 15, 19970(2013).
    [13] L. Velarde, X. Y. Zhang, Z. Lu, A. G. Joly, Z. M. Wang, and H. F. Wang, J. Chem. Phys. 135, 241102(2011).
    [14] L. Fu, S. L. Chen, and H. F. Wang, J. Phys. Chem. B DOI: 101021/acs.jpcb.5b07780.
    [15] R. R. Feng, Y. Guo, R. Lu, L. Velarde, and H. F. Wang, J. Phys. Chem. A 115, 6015(2011).
    [16] R. E. Pool, J. Versluis, E. H. G. Backus, and M. Bonn, J. Phys. Chem. B 115, 15362(2011).
    [17] S. Yamaguchi, J. Chem. Phys. 143, 034202(2015).
    [18] S. Nihonyanagi, R. Kusaka, K. I. Inoue, A. Adhikari, S. Yamaguchi, and T. Tahara, J. Chem. Phys. 143, 124707(2015).
    [19] Y. R. Shen, The Principles of Nonlinear Optics, New York:Wiley-Interscience, (1984).
    [20] Y. R. Shen, Fundamentals of Sum-Frequency Spectroscopy, Cambridge University Press, (2016).
    [21] C. D. Bain, P. B. Davies, T. H. Ong, R. N. Ward, and M. A. Brown, Langmuir 7, 1563(1991).
    [22] V. Ostroverkhov, G. A. Waychunas, and Y. R. Shen, Chem. Phys. Lett. 386, 144(2004).
    [23] V. Ostroverkhov, G. A. Waychunas, and Y. R. Shen, Phys. Rev. Lett. 94, 046102(2005).
    [24] L. F. Scatena, M. G. Brown, and G. L. Richmond, Science 292, 908(2001).
    [25] C. T. Williams and D. A. Beattie, Surf. Sci. 500, 545(2002).
    [26] S. Schrodle, F. G. Moore, and G. L. Richmond, J. Phys. Chem. C 111, 10088(2007).
    [27] Z. Lu, A. Karakoti, L. Velarde, W. Wang, P. Yang, S. Thevuthasan, and H. F. Wang, J. Phys. Chem. C 117, 24329(2013).
    [28] P. Mukherjee, A. Lagutchev, and D. D. Dlott, J. Electrochem. Soc. 159, A244(2012).
    [29] F. Zaera, Chem. Rev. 112, 2920(2012).
    [30] J. P. R. Symonds, H. Arnolds, and D. A. King, J. Phys. Chem. B 108, 14311(2004).
    [31] R. R. Feng, A. A. Liu, S. Liu, J. Shi, R. Zhang, and Z. Ren, J. Chem. Phys. C 119, 9798(2015).
    [32] Y. Tong, K. Cai, M. Wolf, and R. K. Campen, Catal. Today 260, 66(2016).
    [33] Y. Tong, J. Wirth, H. Kirsch, M. Wolf, P. Saalfrank, and R. K. Campen, J. Chem. Phys. 142, 054704(2015).
    [34] Y. R. Shen, Surface Spectrocopy by Nonlinear Optics, in Frontiers in Laser Spectroscopy, T. W. Hansch and M. Inguscio, Eds., Verenna, Italy:International School of Physics-Enrico Fermi, 139(1994).
    [35] X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, Phys. Rev. B 59, 12632(1999).
    [36] N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606(1962).
    [37] N. Bloembergen, Nonlinear Optics, Benjamin:Lecture Note and Reprint Volume, (1965).
    [38] G. R. Crane and J. G. Bergman, J. Chem. Phys. 64, 27(1976).
    [39] D. K. Hore, M. Y. Hamamoto, and G. L. Richmond, J. Chem. Phys. 121, 12589(2004).
    [40] W. T. Liu and Y. R. Shen, Phys. Rev. Lett. 101, (2008).
    [41] W. T. Liu and Y. R. Shen, Phys. Rev. B 78, 024302(2008).
    [42] M. J. Weber, Handbook of Optical Materials, Taylor & Francis, (2002).
    [43] A. A. Liu, S. Liu, R. Zhang, and Z. Ren, J. Chem. Phys. C 119, 23486(2015).
    [44] S. Liu, A. A. Liu, B. Wen, R. Zhang, C. Zhou, L. M. Liu, and Z. Ren, J. Phys. Chem. Lett. 6, 3327(2015).
    [45] L. Velarde and H. F. Wang, J. Chem. Phys. 139, 084204(2013).
    [46] R. Lu, W. Gan, B. H. Wu, H. Chen, and H. F. Wang, J. Phys. Chem. B 108, 7297(2004).
    [47] R. Lu, W. Gan, B. H. Wu, Z. Zhang, Y. Guo, and H. F. Wang, J. Phys. Chem. B 109, 14118(2005).
    [48] L. Fu, Y. Zhang, Z. H. Wei, and H. F. Wang, Chirality 26, 509(2014).
    [49] L. Velarde, Z. Lu, and H. F. Wang, Chin. J. Chem. Phys. 26, 710(2013).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2230) PDF downloads(924) Cited by()

Proportional views
Related

Cross-Propagation Sum-Frequency Generation Vibrational Spectroscopy

doi: 10.1063/1674-0068/29/cjcp1512248

Abstract: Here we report the theory formulation and the experiment realization of sum-frequency generation vibrational spectroscopy (SFG-VS) in the cross-propagation (XP) geometry or configuration. In the XP-SFG-VS, the visible and the infrared (IR) beams in the SFG experiment are delivered to the same location on the surface from visible and IR incident planes perpendicular to each other, avoiding the requirement to have windows or optics to be transparent to both the visible and IR frequencies. Therefore, the XP geometry is applicable to study surfaces in the enclosed vacuum or high pressure chambers with far infrared (FIR) frequencies that can directly access the metal oxide and other lower frequency surface modes, with much broader selection of visible and IR transparent window materials. The potential applications include surface science, material science, fundamental catalytic sciences, as well as low temperature molecular sciences, etc.

Li Fu, Shun-li Chen, Wei Gan, Hong-fei Wang. Cross-Propagation Sum-Frequency Generation Vibrational Spectroscopy[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 70-80. doi: 10.1063/1674-0068/29/cjcp1512248
Citation: Li Fu, Shun-li Chen, Wei Gan, Hong-fei Wang. Cross-Propagation Sum-Frequency Generation Vibrational Spectroscopy[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 70-80. doi: 10.1063/1674-0068/29/cjcp1512248
Reference (49)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return