Wen-kai Zhang. Polarization Dependent Time-Resolved Infrared Spectroscopy and Its Applications[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 1-9. doi: 10.1063/1674-0068/29/cjcp1512246
Citation: Wen-kai Zhang. Polarization Dependent Time-Resolved Infrared Spectroscopy and Its Applications[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 1-9. doi: 10.1063/1674-0068/29/cjcp1512246

Polarization Dependent Time-Resolved Infrared Spectroscopy and Its Applications

doi: 10.1063/1674-0068/29/cjcp1512246
  • Received Date: 2015-12-01
  • Rev Recd Date: 2015-12-28
  • Polarization dependent time-resolved infrared (TRIR) spectroscopy has proven to be a useful technique to study the structural dynamics in a photochemical process. The angular information of transient species is obtainable in this measurement, which makes it a valuable technique for the investigation of electron distribution, molecular structure, and conformational dynamics. In this review, we briefly introduce the principles and applications of polarization dependent TRIR spectroscopy. We mainly focused on the following topics: (i) an overview of TRIR spectroscopy, (ii) principles of TRIR spectroscopy and its advantages compared to the other ultrafast techniques, (iii) examples that use polarization dependent TRIR spectroscopy to probe a variety of chemical and dynamical phenomena including protein conformational dynamics, excited state electron localization, and photoisomerization, (iv) the limitations and prospects of TRIR spectroscopy.
  • 加载中
  • [1] S. Woutersen, U. Emmerichs, and H. J. Bakker, Science 278, 658(1997)
    [2] A. H. Zewail, J. Phys. Chem. A 104, 5660(2000).
    [3] N. A. Anderson and T. Q. Lian, Annual Rev. Phys. Chem. Palo Alto, 491(2005).
    [4] A. Rosspeintner, B. Lang, and E. Vauthey, Annual Review of Physical Chemistry, Vol.64, M. A. Johnson and T. J. Martinez, Eds., Palo Alto:Annual Reviews, 247(2013).
    [5] R. J. D. Miller, Science 343, 1108(2014).
    [6] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, (2006).
    [7] P. Mukherjee, Ultrafast Fluorescence Spectroscopy Used as a Probe to Explore Excited State Photophysics of Biologically and Environmentally Relevant Systems, Proquest:Umi Dissertation Publishing, (2011).
    [8] Y. X. Weng and H. L. Chen, Ultrafast Spectroscopy-rinciples and Techniques (Chinese Edition), Beijing:Chemical Industry Press, (2013).
    [9] G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy, Oxford:Oxford University Press, (1986).
    [10] P. Hannaford, Femtosecond Laser Spectroscopy, Springer, (2005).
    [11] M. D. Fayer, Ultrafast Infrared Vibrational Spectroscopy, New York:CRC Press, (2013).
    [12] F. Schotte, H. S. Cho, V. R. I. Kaila, H. Kamikubo, N. Dashdorj, E. R. Henry, T. J. Graber, R. Henning, M. Wulff, G. Hummer, M. Kataoka, and P. A. Anfinrud, Proc. Nat. Acad. Sci. USA 109, 19256(2012).
    [13] Y. O. Jung, J. H. Lee, J. Kim, M. Schmidt, K. Moffat, V. Srajer, and H. Ihee, Nature Chem. 5, 212(2013).
    [14] K. H. Kim, J. G. Kim, S. Nozawa, T. Sato, K. Y. Oang, T. Kim, H. Ki, J. Jo, S. Park, C. Song, T. Sato, K. Ogawa, T. Togashi, K. Tono, M. Yabashi, T. Ishikawa, J. Kim, R. Ryoo, J. Kim, and H. Ihee, Nature 518(2015).
    [15] H. T. Lemke, C. Bressler, L. X. Chen, D. M. Fritz, K. J. Gaffney, A. Galler, W. Gawelda, K. Haldrup, R. W. Hartsock, H. Ihee, J. Kim, K. H. Kim, J. H. Lee, M. M. Nielsen, A. B. Stickrath, W. Zhang, D. Zhu, and M. Cammarata, J. Phys. Chem. A 117, 735(2013).
    [16] W. Zhang, R. Alonso-Mori, U. Bergmann, C. Bressler, M. Chollet, A. Galler, W. Gawelda, R. G. Hadt, R. W. Hartsock, T. Kroll, K. S. Kjaer, K. Kubicek, H. T. Lemke, H. W. Liang, D. A. Meyer, M. M. Nielsen, C. Purser, J. S. Robinson, E. I. Solomon, Z. Sun, D. Sokaras, T. B. van Driel, G. Vanko, T. C. Weng, D. Zhu, and K. J. Gaffney, Nature 509, 345(2015).
    [17] P. Wernet, K. Kunnus, I. Josefsson, I. Rajkovic, W. Quevedo, M. Beye, S. Schreck, S. Grubel, M. Scholz, D. Nordlund, W. Zhang, R. W. Hartsock, W. F. Schlotter, J. J. Turner, B. Kennedy, F. Hennies, F. M. F. de Groot, K. J. Gaffney, S. Techert, M. Odelius, and A. Fohlisch, Nature 520, 78(2015).
    [18] W. Zhang and K. J. Gaffney, Account. Chem. Res. 48, 1140(2015).
    [19] B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, Science 302, 1382(2003).
    [20] A. H. Zewail, Annual Review of Physical Chemistry. Palo Alto:Annual Reviews, 65(2006).
    [21] M. B. Ji, M. Odelius, and K. J. Gaffney, Science 328, 1003(2010).
    [22] D. Y. Vorobyev, C. H. Kuo, J. X. Chen, D. G. Kuroda, J. N. Scott, J. M. Vanderkooi, and R. M. Hochstrasser, J. Phys. Chem. B 113, 15382(2009).
    [23] W. K. Zhang, Z. G. Lan, Z. Sun, and K. J. Gaffney, J. Phys. Chem. B 116, 11527(2012).
    [24] D. McMorrow and W. T. Lotshaw, J. Phys. Chem. 95, 10395(1991).
    [25] A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, J. Opt. Soc. Am. B 8, 1264(1991).
    [26] H. Hamaguchi, An. Rev. Phys. Chem. 45, 593(1994).
    [27] L. Dhar, J. A. Rogers, and K. A. Nelson, Chem. Rev. 94, 157(1994).
    [28] M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, Chem. Phys. Lett. 270, 9(1997).
    [29] P. Kukura, D. W. McCamant, and R. A. Mathies, Annual Review of Physical Chemistry, Palo Alto:Annual Reviews, 461(2007).
    [30] J. R. Schoonover and G. F. Strouse, Chem. Rev. 98, 1335(1998).
    [31] M. W. George and J. J. Turner, Coordination Chem. Rev. 177, 201(1998).
    [32] E. T. J. Nibbering, H. Fidder, E. Pines, Annual Review of Physical Chemistry, Palo Alto:Annual Reviews, 337(2005).
    [33] J. M. Butler, M. W. George, J. R. Schoonover, D. M. Dattelbaum, and T. J. Meyer, Coordination Chem. Rev. 251, 492(2007).
    [34] R. D. Pensack, K. M. Banyas, L. W. Barbour, M. Hegadorn, and J. B. Asbury, Phys. Chem. Chem. Phys. 11, 2575(2009).
    [35] H. J. Bakker and J. L. Skinner, Chem. Rev. 110, 1498(2010).
    [36] P. Hamm, Chimia 65, 313(2011).
    [37] )M. D. Fayer and N. E. Levinger, Annual Review of Analytical Chemistry, Vol.3. E. S. Yeung and R. N. Zare Eds., Palo Alto:Annual Reviews, 89(2010).
    [38] J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, Proc. Nat. Acad. Sci. USA 855062(1988).
    [39] M. Lim, T. A. Jackson, and P. A. Anfinrud, Science 269, 962(1995).
    [40] P. A. Hansen, J. N. Moore, and R. M. Hochstrasser, Chem. Phys. 131, 49(1989).
    [41] M. H. Lim, T. A. Jackson, and P. A. Anfinrud, J. Chem. Phys. 102, 4355(1995).
    [42] M. H. Lim, T. A. Jackson, and P. A. Anfinrud, Nature Struct. Bio. 4, 209(1997).
    [43] P. A. Anfinrud, C. Han, and R. M. Hochstrasse, Proc. Nat. Acad. Sci. USA 86, 8387(1989).
    [44] D. E. Sagnella, J. E. Straub, T. A. Jackson, M. Lim, and P. A. Anfinrud, Proce. Nat. Acad. Sci. USA 96, 14324(1999).
    [45] M. H. Lim, Bull. Korean Chem. Soc. 23, 865(2002).
    [46] T. Zemojtel, M. Rini, K. Heyne, T. Dandekar, E. T. J. Nibbering, and P. M. Kozlowski, J. Am. Chem. Soc. 126, 1930(2004).
    [47] H. Niwa, S. Inouye, T. Hirano, T. Matsuno, S. Kojima, M. Kubota, M. Ohashi, and F. I. Tsuji, Proc. Nat. Aca. Sci. USA 93, 13617(1996).
    [48] K. B. Bravaya, B. L. Grigorenko, A. V. Nemukhin, and A. I. Krylov, Acc. Chem. Res. 45, 265(2012).
    [49] L. M. Tolbert, A. Baldridge, J. Kowalik, and K. M. Solntsev, Acc. Chem. Res. 45, 171(2012).
    [50] R. Y. Tsien, Annual Rev. Biochem. 67, 509(1998).
    [51] R. Y. Tsien, Angew. Chem. Int. Ed. 48, 5612(2009).
    [52] J. J. van Thor, K. L. Ronayne, M. Towrie, and J. T. Sage, Biophys. J. 95, 1902(2008).
    [53] J. J. van Thor, Chem. Soc. Rev. 38, 2935(2009).
    [54] A. M. Virshup, C. Punwong, T. V. Pogorelov, B. A. Lindquist, C. Ko, and T. J. Martinez, J. Phys. Chem. B 113, 3280(2009).
    [55] A. Usman, O. F. Mohammed, E. T. J. Nibbering, J. Dong, K. M. Solntsev, and L. M. Tolbert, J. Am. Chem. Soc. 127, 11214(2005).
    [56] K. Heyne, O. F. Mohammed, A. Usman, J. Dreyer, and E. T. J. Nibbering, J. Am. Chem. Soc. 127, 18100(2005).
    [57] A. Usman, O. F. Mohammed, K. Heyne, J. Dreyer, and E. T. J. Nibbering, Chem. Phys. Lett. 401, 157(2005).
    [58] Y. Yang, M. Linke, T. von Haimberger, J. Hahn, R. Matute, L. Gonzalez, P. Schmieder, and K. Heyne, J. Am. Chem. Soc. 134, 1408(2012).
    [59] S. K. Jha, M. B. A. Ji, K. J. Gaffney, and S. G. Boxer, Proc. Nat. Acad. Sci. USA 108, 16612(2011).
    [60] M. Linke, A. Lauer, T. von Haimberger, A. Zacarias, and K. Heyn, J. Am. Chem. Soc. 130, 14904(2008).
    [61] M. Linke, M. Theisen, T. von Haimberger, M. E. A. Madjet, A. Zacarias, H. Fidder, and K. Heyne, ChemPhysChem 11, 1283(2010).
    [62] M. Theisen, M. Linke, M. Kerbs, H. Fidder, M. E. A. Madjet, A. Zacarias, and K. Heyne, J. Chem. Phys. 131, 8(2009).
    [63] C. F. Wang, B. K. Mohney, B. B. Akhremitchev, and G. C. Walker, J. Phys. Chem. A 104, 4314(2000).
    [64] I. V. Rubtsov, N. P. Redmore, R. M. Hochstrasser, and M. J. Therien, J. Am. Chem. Soc. 126, 2684(2004).
    [65] R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086(2000).
    [66] K. Wynne and R. M. Hochstrasser, Chem. Phys. 193, 211(1995).
    [67] P. Hamm, Chem. Phys. 200, 415(1995).
    [68] M. Chachisvilis, H. Fidder, and V. Sundstrom, Chem. Phys. Lett. 234, 141(1995).
    [69] W. K. Zhang, M. B. Ji, Z. Sun, and K. J. Gaffney, J. Am. Chem. Soc. 134, 2581(2012).
    [70] R. Jimenez, S. N. Dikshit, S. E. Bradforth, and G. R. Fleming, J. Phys. Chem. 100, 6825(1996).
    [71] C. Sissa, A. Painelli, M. Blanchard-Desce, and F. Terenziani, J. Phys. Chem. B 115, 7009(2011).
    [72] D. M. Jonas, M. J. Lang, Y. Nagasawa, T. Joo, and G. R. Fleming, J. Phys. Chem. 100, 12660(1996).
    [73] K. Wynne, S. M. Lecours, C. Galli, M. J. Therien, and R. M. Hochstrasser, J. Am. Chem. Soc. 117, 3749(1995).
    [74] R. Kumble, S. Palese, V. S. Y. Lin, M. J. Therien, and R. M. Hochstrasser, J. Am. Chem. Soc. 120, 11489(1998).
    [75] C. K. Min, T. Joo, M. C. Yoon, C. M. Kim, Y. N. Hwang, D. Kim, N. Aratani, N. Yoshida, and A. Osuka, J. Chem. Phys. 114, 6750(2001).
    [76] W. Qian and D. M. Jonas, J. Chem. Phys. 119, 1611(2003).
    [77] D. A. Farrow, E. R. Smith, W. Qian, and D. M. Jonas, J. Chem. Phys. 129, 20(2008).
    [78] O. Schalk and A. N. Unterreiner, Phys. Chem. Chem. Phys. 12, 655(2010).
    [79] E. R. Smith and D. M. Jonas, J. Phys. Chem. A 115, 4101(2011).
    [80] A. J. Van Tassle, M. A. Prantil, and G. R. Fleming, J. Phys. Chem. B 110, 18989(2006).
    [81] J. Rehault, V. Zanirato, M. Olivucci, and J. Helbing, J. Chem. Phy. 134, 10(2011).
    [82] G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature 446, 782(2007).
    [83] E. Collini and G. D. Scholes, Science 323, 369(2009).
    [84] R. S. Knox and D. Gulen, Photochem. Photobiol. 57,40(1993).
    [85] K. Wynne and R. M. Hochstrasser, J. Raman Spectro. 26, 561(1995).
    [86] R. A. Malone and D. F. Kelley, J. Chem. Phys. 95, 8970(1991).
    [87] A. T. Yeh, C. V. Shank, and J. K. McCusker, Science 289, 935(2000).
    [88] S. Wallin, J. Davidsson, J. Modin, and L. Hammarstrom, J. Phys. Chem. A 109, 4697(2005).
    [89] C. Galli, K. Wynne, S. M. Lecours, M. J. Therien, and R. M. Hochstrasser, Chem. Phys. Lett. 206, 493(1993).
    [90] R. J. Sension, S. T. Repinec, A. Z. Szarka, and R. M. Hochstrasser, J. Chem. Phys. 98, 6291(1993).
    [91] C. E. McCusker and J. K. McCusker, Inorg. Chem. 50, 1656(2011).
    [92] R. A. Mathies, S. W. Lin, J. B. Ames, and W. T. Pollard, Annual Rev. Biophys. Biophys. Chem. 20, 491(1991).
    [93] R. Neutze, E. Pebay-Peyroula, K. Edman, A. Royant, J. Navarro, and E. M. Landau, Biochim. Et Biophys. Acta-Biomembr. 1565, 144(2002).
    [94] P. Hamm, M. Zurek, T. Roschinger, H. Patzelt, D. Oesterhelt, and W. Zinth, Chem. Phys. Lett. 263, 613(1996).
    [95] P. Hamm, M. Zurek, T. Roschinger, H. Patzelt, D. S. Oesterhelt, and W. Zinth, Chem. Phys. Lett. 268, 180(1997).
    [96] D. H. Waldeck, Chem. Rev. 91, 415(1991).
    [97] Z. R. Grabowski, K. Rotkiewicz, and W. Rettig, Chem. Rev. 103, 3899(2003).
    [98] C. Swalina and M. Maroncelli, J. Phys. Chem. C 114, 5602(2010).
    [99] H. Jin, M. Liang, S. Arzhantsev, X. Li, and M. Maroncelli, J. Phys. Chem. B 114, 7565(2010).
    [100] B. D. Allen, A. C. Benniston, A. Harriman, S. A. Rostron, and C. F. Yu, Phys. Chem. Chem. Phys. 7, 3035(2005).
    [101] A. Y. Jee, E. Bae, and M. Lee, J. Phys. Chem. B 113, 16508(2009).
    [102] K. I. Gutkowski, M. L. Japas, and P. F. Aramendia, Chem. Phys. Lett. 426, 329(2006).
    [103] A Paul and A Samanta, J. Phys. Chem. B 112, 16626(2008).
    [104] Z. G. Lan, Y. Lu, O. Weingart, and W. Thiel, J. Phys. Chem. A 116, 1510(2012).
    [105] K. L. Koziol, P. J. M. Johnson, B. Stucki-Buchli, S. A. Waldauer, and P. Hamm, Curr. Opin. Struct. Biol. 34, 1(2015).
    [106] M. M. Waegele, R. M. Culik, and F. Gai, J. Phys. Chem. Lett. 2, 2598(2011).
    [107] H. Kim and M. Cho, Chem. Rev. 113, 5817(2013).
    [108] J. Q. Ma, I. M. Pazos, W. K. Zhang, R. M. Culik, and F. Gai, Annual Review of Physical Chemistry, Vol 66, M. A. Johnson and T. J. Martinez, Eds., Palo Alto:Annual Reviews, 357(2015).
    [109] M. J. Tucker, M. Abdo, J. R. Courter, J. X. Chen, S. P. Brown, A. B. Smith, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 110, 17314(2013).
    [110] A. A. Deeg, M. S. Rampp, A. Popp, B. M. Pilles, T. E. Schrader, L. Moroder, K. Hauser, and W. Zinth, Chem. Eur. J. 20, 694(2014).
    [111] A. B. Myers and R. M. Hochstrasser, J. Chem. Phys. 85, 6301(1986).
    [112] P. B. Petersen and A Tokmakoff, Opt. Lett. 35, 1962(2010).
    [113] L. De Marco, M. Thamer, M. Reppert, and A. Tokmakoff, J. Chem. Phys. 141, 10(2014).
    [114] M. Thamer, L. De Marco, K. Ramasesha, A. Mandal, and A. Tokmakoff, Science 350, 78(2015).
    [115] M. Bonmarin and J. Helbing, Chirality 21, E298(2009).
    [116] H. J. Rhee, Y. G. June, J. S. Lee, K. K. Lee, J. H Ha, Z. H. Kim, S. J. Jeon, and M. H. Cho, Nature 458, 310(2009).
    [117] C. R. Baiz, D. Schach, and A. Tokmakoff, Opt. Express 22, 18724(2014).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1914) PDF downloads(948) Cited by()

Proportional views
Related

Polarization Dependent Time-Resolved Infrared Spectroscopy and Its Applications

doi: 10.1063/1674-0068/29/cjcp1512246

Abstract: Polarization dependent time-resolved infrared (TRIR) spectroscopy has proven to be a useful technique to study the structural dynamics in a photochemical process. The angular information of transient species is obtainable in this measurement, which makes it a valuable technique for the investigation of electron distribution, molecular structure, and conformational dynamics. In this review, we briefly introduce the principles and applications of polarization dependent TRIR spectroscopy. We mainly focused on the following topics: (i) an overview of TRIR spectroscopy, (ii) principles of TRIR spectroscopy and its advantages compared to the other ultrafast techniques, (iii) examples that use polarization dependent TRIR spectroscopy to probe a variety of chemical and dynamical phenomena including protein conformational dynamics, excited state electron localization, and photoisomerization, (iv) the limitations and prospects of TRIR spectroscopy.

Wen-kai Zhang. Polarization Dependent Time-Resolved Infrared Spectroscopy and Its Applications[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 1-9. doi: 10.1063/1674-0068/29/cjcp1512246
Citation: Wen-kai Zhang. Polarization Dependent Time-Resolved Infrared Spectroscopy and Its Applications[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 1-9. doi: 10.1063/1674-0068/29/cjcp1512246
Reference (117)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return