Bin-bin Xie, Chun-xiang Li, Gang-long Cui, Qiu Fang. Excited-State Proton Transfer and Decay in Hydrogen-Bonded Oxazole System:MS-CASPT2//CASSCF Study[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 38-46. doi: 10.1063/1674-0068/29/cjcp1512242
Citation: Bin-bin Xie, Chun-xiang Li, Gang-long Cui, Qiu Fang. Excited-State Proton Transfer and Decay in Hydrogen-Bonded Oxazole System:MS-CASPT2//CASSCF Study[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 38-46. doi: 10.1063/1674-0068/29/cjcp1512242

Excited-State Proton Transfer and Decay in Hydrogen-Bonded Oxazole System:MS-CASPT2//CASSCF Study

doi: 10.1063/1674-0068/29/cjcp1512242
  • Received Date: 2015-12-01
  • Rev Recd Date: 2015-12-30
  • Herein we have employed high-level multi-reference CASSCF and MS-CASPT2 electronic structure methods to systematically study the photochemical mechanism of intramolecularly hydrogen-bonded 2-(2'-hydroxyphenyl)-4-methyloxazole. At the CASSCF level, we have optimized minima, conical intersections, minimum-energy reaction paths relevant to the excited-state intramolecular proton transfer (ESIPT), rotation, photoisomerization, and the excited-state deactivation pathways. The energies of all structures and paths are refined by the MS-CASPT2 method. On the basis of the present results, we found that the ESIPT process in a conformer with the OH…N hydrogen bond is essentially barrierless process; whereas, the ESIPT process is inhibited in the other conformer with the OH…O hydrogen bond. The central single-bond rotation of the S1 enol species is energetically unfavorable due to a large barrier. In addition, the excited-state deactivation of the S1 keto species, as a result of the ultrafast ESIPT, is very efficient because of the existence of two easily-approached keto S1/S0 conical intersections. In stark contrast to the S1 keto species, the decay of the S1 enol species is almostly blocked. The present theoretical study contributes valuable knowledge to the understanding of photochemistry of similar intramolecularly hydrogen-bonded molecular and biological systems.
  • 加载中
  • [1] P. F. Barbara, P. K. Walsh, and L. E. Brus, J. Phys. Chem.93, 29(1989).
    [2] W. E. Brewer, M. L. Martínez, and P. T. Chou, J. Phys. Chem. 94, 1915(1990).
    [3] T. Arthen-Engeland, T. Bultmann, N. P. Ernsting, M. A. Rodriguez, and W. Thiel,Chem. Phys. 163, 43(1992).
    [4] A. Sytnik and M. Kasha, Proc. Natl. Acad. Sci. 91, 8627(1994).
    [5] T. Mutai, H. Tomoda, T. Ohkawa, Y. Yabe, and K. Araki, Angew. Chem. Int. Ed. 47, 9522(2008).
    [6] F. A. S. Chipem and G. Krishnamoorthy, J. Phys. Chem. A 113, 12063(2009).
    [7] L. Antonov, V. Deneva, S. Simeonov, V. Kurteva, D. Nedeltcheva, and J. Wirz, Angew. Chem. Int. Ed. 48, 7875(2009).
    [8] S. Park, J. E. Kwon, and S. Y. Park, Phys. Chem.Chem. Phys. 14, 8878(2012).
    [9] M. J. Paterson, M. A. Robb, L. Blancafort, and A. D. DeBellis, J. Phys. Chem. A 109, 7527(2005).
    [10] S. Park, O. H. Kwon, S. Kim, S. Park, M. G. Choi, M. Cha, S. Y. Park, and D. J. Jang, J. Am. Chem. Soc. 127,10070(2005).
    [11] J. E. Kwon, S. Park, and S. Y. Park, J. Am. Chem. Soc. 135, 11239(2013).
    [12] W. Zhang, Y. L. Yan, J. M. Gu, J. N. Yao, and Y. S. Zhao,Angew. Chem. Int. Ed. 54, 7125(2015).
    [13] B. Gu, L. Y. Huang, N. X. Mi, P. Yin, Y. Y. Zhang, X. M. Tu, X. B. Luo, S. L. Luo, and S. Z. Yao, Analyst 140, 2778(2015).
    [14] M. T. Ignasiak, C. Houée-Levin, G. Kciuk, B. Marciniak, and T. Pedzinski, ChemPhysChem 16, 628(2015).
    [15] G. Yang, F. Morlet-Savary, Z. Peng, S. Wu, and J. P. Fouassier, Chem. Phys. Lett. 256, 536(1996).
    [16] W. H. Fang, J. Am. Chem. Soc. 120, 7568(1998).
    [17] A. L. Sobolewski and W. Domcke, Phys. Chem. Chem. Phys. 1, 3065(1999).
    [18] S. Lochbrunner, A. J. Wurzer, and E. Riedle, J. Chem. Phys. 112, 10699(2000).
    [19] A. L. Sobolewski and W. Domcke, J. Phys. Chem. A 108, 10917(2004).
    [20] M. Ziólek, J. Kubicki, A. Maciejewski, R. Naskręcki, and A. Grabowska, Phys. Chem. Chem. Phys. 6, 4682(2004).
    [21] D. Nedeltcheva, B. Damyanova, and S. Popov, J. Mol. Struct. 749, 36(2005).
    [22] Y. Wu and V. S. Batista, J. Chem. Phys. 124, 224305(2006).
    [23] A. Sobolewski and W. Domcke, J. Phys. Chem. A 111, 11725(2007).
    [24] A. Migani, M. Bearpark, M. Olivucci, and M. Robb, J. Am. Chem. Soc. 129, 3703(2007).
    [25] W. Rodríguez-Córdoba, J. S. Zugazagoitia, E. Collado-Fregoso, and J. Peon, J. Phys. Chem. A 111, 6241(2007).
    [26] A. Migani, L. Blancafort, M. A. Robb, and A. D. DeBellis, J. Am. Chem. Soc. 130, 6932(2008).
    [27] G. J. Zhao and K. L. Han, Phys. Chem. Chem. Phys. 12, 8914(2010).
    [28] K. C. Tang, M. Chang, T. Y. Lin, H. A. Pan, T. C. Fang, K. Y. Chen, W. Y. Hung, Y. H. Hsu, and P. T. Chou, J. Am. Chem. Soc. 133, 17738(2011).
    [29] G. J. Zhao and K. L. Han, Acc. Chem. Res. 45, 404(2012).
    [30] G. L. Cui and W. Thiel, Phys. Chem. Chem. Phys. 14, 12378(2012).
    [31] T. Sekikawa, O. Schalk, G. Wu, A. E. Boguslavskiy, and A. Stolow, J. Phys. Chem. A 117, 2971(2013).
    [32] N. Suzuki, A. Fukazawa, K. Nagura, S. Saito, H. Kitoh-Nishioka, D. Yokogawa, S. Irle, and S. Yamaguchi, Angew. Chem. Int. Ed. 53, 8231(2014).
    [33] D. Tuna, A. Sobolewski, and W. Domcke, J. Phys. Chem. B 118, 976(2014).
    [34] X. P. Chang, Q. Fang, and G. L. Cui, J. Chem. Phys. 141, 154311(2014).
    [35] S. H. Xia, B. B. Xie, Q. Fang, G. L. Cui, and W. Thiel, Phys. Chem. Chem. Phys. 17, 9687(2015).
    [36] P. J. Guan, G. L. Cui, and Q. Fang, ChemPhysChem 16, 805(2015).
    [37] X. P. Chang, G. L. Cui, W. H. Fang, and W. Thiel, ChemPhysChem 16, 933(2015).
    [38] V. Guallar, M. Moreno, J. M. Lluch, F. Amat-Guerri, and A. Douhal, J. Phys. Chem. 100, 19789(1996).
    [39] A. Douhal, T. Fiebig, M. Chachisvilis, and A. H. Zewail, J. Phys. Chem. A 102, 1657(1998).
    [40] I. García-Ochoa, M. A. D. López, M. H. Viñas, L. Santos, E. M. Atáz, F. Amat-Guerri, and A. Douhal, Chem. Eur. J. 5, 897(1999).
    [41] D. P. Zhong, A. Douhal, and A. H. Zewail, Proc. Natl. Acad. Sci. USA 97, 14056(2000).
    [42] V. Guallar, V. S. Batista, and W. H. Miller, J. Chem. Phys. 113, 9510(2000).
    [43] R. Casadesús, M. Moreno, and J. M. Lluch, Chem. Phys. Lett. 356, 423(2002).
    [44] R. Casadesús, M. Moreno, and J. M. Lluch, Photobiol. 173, 365(2005).
    [45] O. Vendrell, M. Moreno, J. M. Lluch, and S. Hammes-Schiffer, J. Phys. Chem. B 108, 6616(2004).
    [46] K. Andersson, P. AA. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, J. Phys. Chem. 94, 5483(1990).
    [47] K. Andersson, P. AA. Malmqvist, and B. O. Roos, J. Chem. Phys. 96, 1218(1992).
    [48] N. Forsberg and P. Malmqvist, Chem. Phys. Lett. 274, 196(1997).
    [49] F. Aquilante, R. Lindh, and T. B. Pedersen, J. Chem. Phys. 127, 114107(2007).
    [50] G. Ghigo, B. O. Roos, and P. Å. Malmqvist, Chem. Phys. Lett. 396, 142(2004).
    [51] W. H. Fang, J. Am. Chem. Soc. 121, 8376(1999).
    [52] H. Y. He and W. H. Fang, J. Am. Chem. Soc. 125, 16139(2003).
    [53] W. H. Fang, Acc. Chem. Res. 41, 452(2008).
    [54] G. L. Cui, L. Ding, F. Feng, Y. J. Liu, and W. H. Fang, J. Chem. Phys. 132, 194308(2010).
    [55] G. L. Cui and W. H. Fang, ChemPhysChem 12, 1689(2011).
    [56] G. L. Cui and W. H. Fang, ChemPhysChem 12, 1351(2011).
    [57] G. L. Cui, Z. G. Sun, and W. H. Fang, J. Phys. Chem. A 115, 10146(2011).
    [58] G. L. Cui and W. H. Fang, J. Chem. Phys. 138, 044315(2013).
    [59] G. L. Cui and W. Thiel, J. Phys. Chem. Lett. 5, 2682(2014).
    [60] T. Yanai, D. Tew, and N. Handy, Chem. Phys. Lett. 393, 51(2004).
    [61] S. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200(1980).
    [62] A. D. Becke, Phys. Rev. A 38, 3098(1988).
    [63] C. Lee, W. Yang, and R. Parr, Phys. Rev. B 37, 785(1988).
    [64] A. D. Becke, J. Chem. Phys. 98, 1372(1993).
    [65] R. Ditchfield, W. Hehre, and J. Pople, J. Chem. Phys. 54, 724(1971).
    [66] P. Hariharan and J. Pople, Theor. Chem. Acc. 28, 213(1973).
    [67] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheesem, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, {Gaussian 09, Revision B.01. Wallingford CT:Gaussian, Inc., (2010).
    [68] F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P. Malmqvist, P. Neogrády, T. Pedersen, M. Pitoňák, M. Reiher, B. Roos, L. Serrano-Andrès, M. Urban, V. Veryazov, and R. Lindh, J. Comput. Chem. 31, 224(2010).
    [69] J. Koutecký, V. Bonačić-Koutecký, J. Čížek, D. Dö, Int. J. Quantum Chem. 12, 357(1978).
    [70] L. Salem, Acc. Chem. Res. 12, 87(1979).
    [71] A. Viel, R. P. Krawczyk, U. Manthe, and W. Domcke, Angew. Chem. Int. Ed. 42, 3434(2003).
    [72] G. L. Cui, P. J. Guan, and W. H. Fang, J. Phys. Chem. A 118, 4732(2014).
    [73] G. Cui, Z. Lan, and W. Thiel, J. Am. Chem. Soc. 134, 1662(2012).
    [74] L. Spörkel, G. L. Cui, and W. Thiel, J. Phys. Chem. A 118, 4732(2014).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2195) PDF downloads(1037) Cited by()

Proportional views
Related

Excited-State Proton Transfer and Decay in Hydrogen-Bonded Oxazole System:MS-CASPT2//CASSCF Study

doi: 10.1063/1674-0068/29/cjcp1512242

Abstract: Herein we have employed high-level multi-reference CASSCF and MS-CASPT2 electronic structure methods to systematically study the photochemical mechanism of intramolecularly hydrogen-bonded 2-(2'-hydroxyphenyl)-4-methyloxazole. At the CASSCF level, we have optimized minima, conical intersections, minimum-energy reaction paths relevant to the excited-state intramolecular proton transfer (ESIPT), rotation, photoisomerization, and the excited-state deactivation pathways. The energies of all structures and paths are refined by the MS-CASPT2 method. On the basis of the present results, we found that the ESIPT process in a conformer with the OH…N hydrogen bond is essentially barrierless process; whereas, the ESIPT process is inhibited in the other conformer with the OH…O hydrogen bond. The central single-bond rotation of the S1 enol species is energetically unfavorable due to a large barrier. In addition, the excited-state deactivation of the S1 keto species, as a result of the ultrafast ESIPT, is very efficient because of the existence of two easily-approached keto S1/S0 conical intersections. In stark contrast to the S1 keto species, the decay of the S1 enol species is almostly blocked. The present theoretical study contributes valuable knowledge to the understanding of photochemistry of similar intramolecularly hydrogen-bonded molecular and biological systems.

Bin-bin Xie, Chun-xiang Li, Gang-long Cui, Qiu Fang. Excited-State Proton Transfer and Decay in Hydrogen-Bonded Oxazole System:MS-CASPT2//CASSCF Study[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 38-46. doi: 10.1063/1674-0068/29/cjcp1512242
Citation: Bin-bin Xie, Chun-xiang Li, Gang-long Cui, Qiu Fang. Excited-State Proton Transfer and Decay in Hydrogen-Bonded Oxazole System:MS-CASPT2//CASSCF Study[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 38-46. doi: 10.1063/1674-0068/29/cjcp1512242
Reference (74)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return