Jia-ye Jin, Guan-jun Wang, Ming-fei Zhou. Infrared Photodisssociation Spectroscopy of Boron Carbonyl Cation Complexes[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 47-52. doi: 10.1063/1674-0068/29/cjcp1512238
Citation: Jia-ye Jin, Guan-jun Wang, Ming-fei Zhou. Infrared Photodisssociation Spectroscopy of Boron Carbonyl Cation Complexes[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 47-52. doi: 10.1063/1674-0068/29/cjcp1512238

Infrared Photodisssociation Spectroscopy of Boron Carbonyl Cation Complexes

doi: 10.1063/1674-0068/29/cjcp1512238
  • Received Date: 2015-11-25
  • Rev Recd Date: 2015-12-08
  • The boron carbonyl cation complexes B(CO)3+, B(CO)4+ and B2(CO)4+ are studied by infrared photodissociation spectroscopy and theoretical calculations. The B(CO)4+ ions are characterized to be very weakly bound complexes involving a B(CO)3+ core ion, which is predicted to have a planar DD3h structure with the central boron retaining the most favorable 8-electron configuration. The B2(CO)4+ cation is determined to have a planar D2h structure involving a B-B one and half bond. The analysis of the B-CO interactions with the EDA-NOCV method indicates that the OC→B σ donation is stronger than the B→CO π back donation in both ions.
  • 加载中
  • [1] F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry, 6th Edn., New York:John Wiley, (1999).
    [2] G. Frenking and N. Fröhlich, Chem. Rev. 100, 717(2000).
    [3] M. F. Zhou, L. Andrews, and C. W. Bauschlicher Jr., Chem. Rev. 101, 1931(2001).
    [4] F. A. Cotton, B. A. Frenz, and L. Kruczynski, J. Am. Chem. Soc. 95, 951(1973).
    [5] M. Manassero, M. Sansoni, and G. Longoni, J. Chem. Soc. Chem. Commun. 919(1976).
    [6] R. Colton and M. J. McCormick, Coord. Chem. Rev. 31, 1(1980).
    [7] L. Jiang and Q. Xu, J. Am. Chem. Soc. 127, 42(2005).
    [8] X. J. Zhou, J. M. Cui, Z. H. Li, G. J. Wang, Z. P. Liu, and M. F. Zhou, J. Phys. Chem. A 117, 1514(2013).
    [9] J. H. Osborne, A. L. Rheingold, and W. C. Trogler, J. Am. Chem. Soc. 107, 6292(1985).
    [10] X. J. Zhou, J. M. Cui, Z. H. Li, G. J. Wang, and M. F. Zhou, J. Phys. Chem. A 116, 12349(2012).
    [11] W. A. Herrmann, H. Biersack, M. L. Ziegler, K. Weidenhammer, R. Siegel, and D. Rehder, J. Am. Chem. Soc. 103, 1692(1981).
    [12] A. J. Bridgeman, Inorg. Chim. Acta. 321, 27(2001).
    [13] H. J. Himmel, A. J. Downs, and T. M. Greene, Chem. Rev. 102, 4191(2002).
    [14] L. Andrews, T. J. Tague, and G. P. Kushto, Inorg. Chem. 34, 2952(1995).
    [15] P. H. Kasai and P. M. Jones, J. Am. Chem. Soc. 106, 8018(1984).
    [16] J. H. B. Chenier, C. A. Hampson, J. A. Howard, B. Mile, and R. Sutcliffe, J. Phys. Chem. 90, 1524(1986).
    [17] C. Xu, L. Manceron, and J. P. Perchard, J. Chem. Soc., Faraday Trans. 89, 1291(1993).
    [18] Q. Y. Kong, M. H. Chen, J. Dong, Z. H. Li, K. N. Fan, and M. F. Zhou, J. Phys. Chem. A 106, 11709(2002).
    [19] L. N. Zhang, J. Dong, M. F. Zhou, and Q. Z. Qin, J. Chem. Phys. 113, 10169(2000).
    [20] P. H. Kasai and P. M. Jones, J. Phys. Chem. 89, 2019(1985).
    [21] J. A. Howard, R. Sutcliffe, C. A. Hampson, and B. Mile, J. Phys. Chem. 90, 4268(1986).
    [22] H. J. Himmel, A. J. Downs, J. C. Greene, and T. M. Greene, J. Phys. Chem. A 104, 3642(2000).
    [23] W. G. Hatton, N. P. Hacker, and P. H. Kasai, J. Phys. Chem. 93, 1328(1989).
    [24] R. R. Lembke, R. F. Ferrante, and W. Weltner, J. Am. Chem. Soc. 99, 416(1977).
    [25] M. F. Zhou, L. Jiang, and Q. Xu, J. Chem. Phys. 121, 10474(2004).
    [26] A. Feltrin, S. N. Cesaro, and F. Ramondo, Vib. Spectrosc. 10, 139(1996).
    [27] M. F. Zhou, L. Jiang, and Q. Xu, J. Phys. Chem. A 109, 3325(2005).
    [28] A. Bos, J. Chem. Soc. Chem. Commun. 1, 26(1972).
    [29] L. N. Zhang, J. Dong, and M. F. Zhou, J. Chem. Phys. 113, 8700(2000).
    [30] L. Jiang and Q. Xu, Bull. J. Chem. Soc. Jpn. 79, 857(2006).
    [31] L. Jiang and Q. Xu, J. Chem. Phys. 122, 034505(2005).
    [32] L. N. Zhang, J. Dong, and M. F. Zhou, Chem. Phys. Lett. 335, 334(2001).
    [33] A. J. Bridgeman, N. Harris, and N. A. Young, Chem. Commun. 14, 1241(2000).
    [34] T. Liang, S. D. Flynn, A. M. Morrison, and G. E. Douberly, J. Phys. Chem. A 115, 7437(2011).
    [35] A. D. Brathwaite and M. A. Duncan, J. Phys. Chem. A 116, 1375(2012).
    [36] A. Ellern, T. Drews, and L. Seppelt, Z. Anorg. Allg. Chem. 627, 73(2001).
    [37] R. Tonner and G. Frenking, Chem. Eur. J. 14, 3260(2008).
    [38] I. Bernhardi, T. Drews, and K. Seppelt, Angew. Chem. Int. Ed. 38, 2232(1999).
    [39] A. B. Burg and H. I. Schlesinger, J. Am. Chem. Soc. 59, 780(1937).
    [40] A. Terheiden, E. Bernhardt, H. Willner, and F. Aubke, Angew. Chem. Int. Ed. 41, 799(2002).
    [41] M. Finze, E. Bernhardt, A. Terheiden, M. Berkei, H. Willner, D. Christen, H. Oberhammer, and F. Aubke, J. Am. Chem. Soc. 124, 15385(2002).
    [42] M. Gerken, G. Pawelke, E. Bernhardt, and H. Willner, Chem. Eur. J. 16, 7527(2010).
    [43] A. Fukazawa, J. L. Dutton, C. Fan, L. G. Mercier, A. Y. Houghton, Q. Wu, W. E. Piers, and M. Parvez, Chem. Sci. 3, 1814(2012).
    [44] Y. M. Hamrick, R. J. V. Zee, J. T. Godbout, W. Weltner, W. J. Lauderdale, J. F. Stanton, and R. J. Bartlett, J. Phys. Chem. 95, 2840(1991).
    [45] T. R. Burkholder and L. Andrews, J. Phys. Chem. 96, 10195(1992).
    [46] M. F. Zhou, N. Tsumori, L. Andrews, and Q. Xu, J. Phys. Chem. A 107, 2458(2003).
    [47] Q. N. Zhang, W. L. Li, C. Xu, M. H. Chen, M. F. Zhou, J. Li, D. M. Andrada, and G. Frenking, Angew. Chem. Int. Ed. 54, 11078(2015).
    [48] M. F. Zhou, N. Tsumori, Z. H. Li, K. N. Fan. L. Andrews, and Q. Xu, J. Am. Chem. Soc. 124, 12936(2002).
    [49] M. F. Zhou, Z. X. Wang, P. R. Schleyer, and Q. Xu, Chem. Phys. Chem. 4, 763(2003).
    [50] M. F. Zhou, Q. Xu, Z. X. Wang, and P. R. Schleyer, J. Am. Chem. Soc. 124, 14854(2002).
    [51] H. Braunschweig, R. D. Dewhurst, F. Hupp, M. Nutz, K. Radacki, C. W. Tate, A. Vargas, and Y. Ye, Nature 522, 327(2015).
    [52] G. J. Wang, C. X. Chi, X. P. Xing, C. J. Ding, and M. F. Zhou, Sci. China Chem. 57, 172(2014).
    [53] G. J. Wang, C. X. Chi, J. M. Cui, X. P. Xing, and M. F. Zhou, J. Phys. Chem. A 116, 2484(2012).
    [54] A. D. Becke, J. Chem. Phys. 98, 5648(1993).
    [55] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785(1988).
    [56] D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 100, 2975(1994).
    [57] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakat-suji, M. Caricato, X. Li, H. P. Hratchian, A. F. Iz-maylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyen-gar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochter-ski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A02, Pittsburgh, PA:Gaussian, Inc., (2009).
    [58] A. D. Becke, Phys. Rev. A 38, 3098(1988).
    [59] J. P. Perdew, Phys. Rev. B 33, 8822(1986).
    [60] J. G. Snijders, E. J. Baerends, and P. Vernoojs, At. Data Nucl. Data Tables 26, 483(1981).
    [61] G. Te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. Van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comput. Chem. 22, 931(2001).
    [62] M. Okumura, L. I. Yeh, J. D. Myers, and Y. T. Lee, J. Chem. Phys. 85, 2328(1986).
    [63] W. H. Robertson and M. A. Johnson, Annu. Rev. Phys. Chem. 54, 173(2003).
    [64] A. M. Ricks, Z. E. Reed, and M. A. Duncan, J. Mol. Spectrosc. 266, 63(2011).
    [65] G. J. Wang, J. M. Cui, C. X. Chi, X. J. Zhou, Z. H. Li, X. P. Xing, and M. F. Zhou, Chem. Sci. 3, 3272(2012).
    [66] J. M. Cui, G. J. Wang, X. J. Zhou, C. X. Chi, Z. H. Li, Z. P. Liu, and M. F. Zhou, Phys. Chem. Chem. Phys 15, 10224(2013).
    [67] P. Pyykko and M. Atsumi, Chem. Eur. J. 15, 12770(2009).
    [68] M. P. Mitoraj, A. Michalak, and T. Ziegler, J. Chem. Theory Comput. 5, 962(2009).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2087) PDF downloads(1311) Cited by()

Proportional views
Related

Infrared Photodisssociation Spectroscopy of Boron Carbonyl Cation Complexes

doi: 10.1063/1674-0068/29/cjcp1512238

Abstract: The boron carbonyl cation complexes B(CO)3+, B(CO)4+ and B2(CO)4+ are studied by infrared photodissociation spectroscopy and theoretical calculations. The B(CO)4+ ions are characterized to be very weakly bound complexes involving a B(CO)3+ core ion, which is predicted to have a planar DD3h structure with the central boron retaining the most favorable 8-electron configuration. The B2(CO)4+ cation is determined to have a planar D2h structure involving a B-B one and half bond. The analysis of the B-CO interactions with the EDA-NOCV method indicates that the OC→B σ donation is stronger than the B→CO π back donation in both ions.

Jia-ye Jin, Guan-jun Wang, Ming-fei Zhou. Infrared Photodisssociation Spectroscopy of Boron Carbonyl Cation Complexes[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 47-52. doi: 10.1063/1674-0068/29/cjcp1512238
Citation: Jia-ye Jin, Guan-jun Wang, Ming-fei Zhou. Infrared Photodisssociation Spectroscopy of Boron Carbonyl Cation Complexes[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 47-52. doi: 10.1063/1674-0068/29/cjcp1512238
Reference (68)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return