Cheng-qian Tang, Ke Lin, Xiao-guo Zhou, Shi-lin Liu. In situ Detection of Amide A Bands of Proteins in Water by Raman Ratio Spectrum[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 129-134. doi: 10.1063/1674-0068/29/cjcp1511240
Citation: Cheng-qian Tang, Ke Lin, Xiao-guo Zhou, Shi-lin Liu. In situ Detection of Amide A Bands of Proteins in Water by Raman Ratio Spectrum[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 129-134. doi: 10.1063/1674-0068/29/cjcp1511240

In situ Detection of Amide A Bands of Proteins in Water by Raman Ratio Spectrum

doi: 10.1063/1674-0068/29/cjcp1511240
  • Received Date: 2015-11-30
  • Rev Recd Date: 2016-01-27
  • The amide A band of protein is sensitive to the hydrogen bands of amide groups of proteins. However, it is hard to distinguish the amide A band of aqueous protein in situ directly, since it overlaps with O-H stretching vibration of water. In this work, we presented a new analytical method of Raman ratio spectrum, which can extract the amide A band of proteins in water. To obtain the Raman ratio spectrum, the Raman spectrum of aqueous protein was divided by that of pure water. A mathematical simulation was employed to examine whether Raman ratio spectrum is effective. Two kinds of protein, lysozyme and α-chymotrypsin were employed. The amide A bands of them in water were extracted from Raman ratio spectra. Additionally, the process of thermal denaturation of lysozyme was detected from Raman ratio spectrum. These results demonstrated the Raman ratio spectra could be employed to study the amide A modes of proteins in water.
  • 加载中
  • [1] T. G. Spiro and B. P. Gaber, Annu. Rev. Biochem. 46, 553(1977).
    [2] D. I. Ellis, D. P. Cowcher, L. Ashton, S. O'Hagan, and R. Goodacre, The Analyst 138, 3871(2013).
    [3] V. Kocherbitov, J. Latynis, A. Misiūnas, J. Barauskas, and G. Niaura, J. Phys. Chem. B 117, 4981(2013).
    [4] A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, J. Raman Spectrosc. 44, 1061(2013).
    [5] A. J. P. Alix, G. Pedanou, and M. Berjot, J. Mol. Struct. 174, 159(1988).
    [6] F. Dousseau and M. Pezolet, Biochemistry (Mosc.) 29, 8771(1990).
    [7] S. A. Oladepo, K. Xiong, Z. M. Hong, S. A. Asher, J. Handen, and I. K. Lednev, Chem. Rev. 112, 2604(2012).
    [8] S. J. Ye, H. C. Li, W. L. Yang, and Y. Luo, J. Am. Chem. Soc. 136, 1206(2014).
    [9] E. C. Y. Yan, Z. G. Wang, and L. Fu, J. Phys. Chem. B 119, 2769(2015).
    [10] P. K. Johansson and P. Koelsch, J. Am. Chem. Soc. 136, 13598(2014).
    [11] P. Cioni and G. B. Strambini, Biophys. J. 82, 3246(2002).
    [12] A. Fulara and W. Dzwolak, J. Phys. Chem. B 114, 8278(2010).
    [13] E. E. Baquero, W. H. James, S. H. Choi, S. H. Gellman, and T. S. Zwier, J. Am. Chem. Soc. 130, 4784(2008).
    [14] E. E. Baquero, W. H. James, S. H. Choi, S. H. Gellman, and T. S. Zwier, J. Am. Chem. Soc. 130, 4795(2008).
    [15] H. S. Biswal, E. Gloaguen, Y. Loquais, B. Tardivel, and M. Mons, J. Phys. Chem. Letters 3, 755(2012).
    [16] K. Lin, X. G. Zhou, Y. Luo, and S. L. Liu, J. Phys. Chem. B 114, 3567(2010).
    [17] K. Lin, N. Y. Hu, X. G. Zhou, S. L. Liu, and Y. Luo, J. Raman Spectrosc. 43, 82(2012).
    [18] L. Chen, W. D. Zhu, K. Lin, N. Y. Hu, Y. Q. Yu, X. G. Zhou, L. F. Yuan, S. M. Hu, and Y. Luo, J. Phys. Chem. A 119, 3209(2015).
    [19] J. Kong and S. Yu, Acta Biochim. Biophys. Sin. 39, 549(2007).
    [20] Z. M. Wang, G. Y. Zhu, Q. C. Huang, M. X. Qian, M. C. Shao, Y. S. Jia, and Y. Q. Tang, Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology 1384, 335(1998).
    [21] W. Kabsch and C. Sander, Biopolymers 22, 2577(1983).
    [22] A. Giugliarelli, P. Sassi, M. Paolantoni, A. Morresi, R. Dukor, and L. Nafie, J. Phys. Chem. B 117, 2645(2013).
    [23] G. Bellavia, L. Paccou, S. Achir, Y. Guinet, J. Siepmann, and A. Hedoux, Food Biophysics 8, 170(2013).
    [24] A. Hedoux, R. Ionov, J. F. Willart, A. Lerbret, F. Affouard, Y. Guinet, M. Descamps, D. Prevost, L. Paccou, and F. Danede, J. Chem. Phys. 124, (2006).
    [25] Y. Moriyama, N. Kondo, and K. Takeda, Langmuir 28, 16268(2012).
    [26] T. Yamamoto, N. Fukui, A. Hori, and Y. Matsui, J. Mol. Struct. 782, 60(2006).
    [27] H. Baltacioglu, A. Bayindirli, M. Severcan, and F. Severcan, Food Chem. 187, 263(2015).
    [28] A. Saeed, G. A. Raouf, S. S. Nafee, S. A. Shaheen, and Y. Al-Hadeethi, PLoS ONE 10, (2015).
    [29] J. V. Coe, S. V. Nystrom, Z. M. Chen, R. Li, D. Verreault, C. L. Hitchcock, E. W. Martin, and H. C. Allen, J. Phys. Chem. B 119, 13079(2015).
    [30] H. Y. Yang, S. N. Yang, J. L. Kong, A. C. Dong, and S. N. Yu, Nat. Protoc. 10, (2015).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2149) PDF downloads(1136) Cited by()

Proportional views
Related

In situ Detection of Amide A Bands of Proteins in Water by Raman Ratio Spectrum

doi: 10.1063/1674-0068/29/cjcp1511240

Abstract: The amide A band of protein is sensitive to the hydrogen bands of amide groups of proteins. However, it is hard to distinguish the amide A band of aqueous protein in situ directly, since it overlaps with O-H stretching vibration of water. In this work, we presented a new analytical method of Raman ratio spectrum, which can extract the amide A band of proteins in water. To obtain the Raman ratio spectrum, the Raman spectrum of aqueous protein was divided by that of pure water. A mathematical simulation was employed to examine whether Raman ratio spectrum is effective. Two kinds of protein, lysozyme and α-chymotrypsin were employed. The amide A bands of them in water were extracted from Raman ratio spectra. Additionally, the process of thermal denaturation of lysozyme was detected from Raman ratio spectrum. These results demonstrated the Raman ratio spectra could be employed to study the amide A modes of proteins in water.

Cheng-qian Tang, Ke Lin, Xiao-guo Zhou, Shi-lin Liu. In situ Detection of Amide A Bands of Proteins in Water by Raman Ratio Spectrum[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 129-134. doi: 10.1063/1674-0068/29/cjcp1511240
Citation: Cheng-qian Tang, Ke Lin, Xiao-guo Zhou, Shi-lin Liu. In situ Detection of Amide A Bands of Proteins in Water by Raman Ratio Spectrum[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 129-134. doi: 10.1063/1674-0068/29/cjcp1511240
Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return