Jie Zhao, Bing Xu, Wen-jie Yu, Xue-feng Wang. Reactions of Group V Metal Atoms with Hydrogen Sulfide:Argon Matrix Infrared Spectra and Theoretical Calculations[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 10-20. doi: 10.1063/1674-0068/29/cjcp1511233
Citation: Jie Zhao, Bing Xu, Wen-jie Yu, Xue-feng Wang. Reactions of Group V Metal Atoms with Hydrogen Sulfide:Argon Matrix Infrared Spectra and Theoretical Calculations[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 10-20. doi: 10.1063/1674-0068/29/cjcp1511233

Reactions of Group V Metal Atoms with Hydrogen Sulfide:Argon Matrix Infrared Spectra and Theoretical Calculations

doi: 10.1063/1674-0068/29/cjcp1511233
  • Received Date: 2015-11-16
  • Rev Recd Date: 2015-12-30
  • The reaction of laser-ablated vanadium, niobium and tantalum atoms with hydrogen sulfide has been investigated using matrix isolation FTIR and theoretical calculations. The metal atoms inserted into the H-S bond of H2S to form the HMSH molecules (M=V, Nb, Ta), which rearranged to H2MS molecules on annealing for Nb and Ta. The HMSH molecule can also further react with another H2S to form the H2M(SH)2 molecules. These new molecules were identified on the basis of the D2S and H234S isotopic substitutions. DFT (B3LYP and BPW91) theoretical calculations are used to predict energies, geometries, and vibrational frequencies for these novel metal dihydrido complexes and molecules. Reaction mechanism for formation of group V dihydrido complex was investigated by DFT internal reaction coordinate calculations. The dissociation of HVSH gave VS+H2 on broad band irradiation and reverse reaction happened on annealing. Based on B3LYP calculation releasing hydrogen from HVSH is endothermic only by 13.5 kcal/mol with lower energy barrier of 16.9 kcal/mol.
  • 加载中
  • [1] J. Zaman and A. Chakma, Fuel Process. Technol. 41, 159(1995).
    [2] H. Shiina, M. Oya, K. Yamashita, A. Miyoshi, and H. Matsui, J. Phys. Chem. 100, 2136(1996).
    [3] T. Chivers, J. B. Hyne, and C. Lau, Int. J. Hydrogen Energy 5, 499(1980).
    [4] E. A. Fletcher, J. E. Noring, and J. P. Murray, Int. J. Hydrogen Energy 9, 587(1984).
    [5] J. F. Reber and K. Meier, J. Phys. Chem. 88, 5903(1984).
    [6] D. W. Kalina and E. T. Maas Jr., Int. J. Hydrogen Energy 10, 163(1985).
    [7] D. W. Kalina and E. T. Maas Jr., Int. J. Hydrogen Energy 10, 157(1985).
    [8] J. F. Reber and M. Rusek, J. Phys. Chem. 90, 824(1986).
    [9] L. M. Al-Shamma and S. A. Naman, Int. J. Hydrogen Energy 15, 1(1990).
    [10] K. Petrov and S. Srinivasan, Int. J. Hydrogen Energy 21, 163(1996).
    [11] S. V. Tambwekar and M. Subrahmanyam, Int. J. Hydrogen Energy 22, 959(1997).
    [12] Z. Lei, W. You, M. Liu, G. Zhou, T. Takata, M. Hara, K. Domen, and C. Li, Chem. Commun. 214(2003).
    [13] H. Wang, Int. J. Hydrogen Energy 32, 3907(2007).
    [14] G. B. Zhao, S. John, J. J. Zhang, J. C. Hamann, S. S. Muknahallipatna, S. Legowski, J. F. Ackerman, and M. D. Argyle, Chem. Eng. Sci. 62, 2216(2007).
    [15] H. Huang, Y. Yu, and K. H. Chung, 23, 4420(2009).
    [16] T. Nunnally, K. Gutsol, A. Rabinovich, A. Fridman, A. Starikovsky, A. Gutsol, and R. W. Potter, Int. J. Hydrogen Energy 34, 7618(2009).
    [17] H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, and C. Li, J. Catal. 266, 165(2009).
    [18] E. Linga Reddy, V. M. Biju, and C. Subrahmanyam, Appl. Energy 95, 87(2012).
    [19] X. Zong, J. Han, B. Seger, H. Chen, G. Lu, C. Li, and L. Wang, Angew. Chem. Int. Ed. 53, 4399(2014).
    [20] G. Ma, H. Yan, X. Zong, B. Ma, H. Jiang, F. Wen, and C. Li, Chin. J. Catal. 29, 313(2008).
    [21] G. Ma, H. Yan, J. Shi, X. Zong, Z. Lei, and C. Li, J. Catal. 260, 134(2008).
    [22] F. Yu, X. Han, and L. Chen, Chem. Commun. 50, 12234(2014).
    [23] A. J. Tursi and E. R. Nixon, J. Chem. Phys. 53, 518(1970).
    [24] R. R. Smardzewski and M. C. Lin, J. Chem. Phys. 66, 3197(1977).
    [25] E. L. Woodbridge, T. L. Tso, M. P. McGrath, W. J. Hehre, and E. K. C. Lee, J. Chem. Phys. 85, 6991(1986).
    [26] J. D. Carpenter and B. S. Ault, J. Phys. Chem. 96, 7913(1992).
    [27] E. Isoniemi, M. Pettersson, L. Khriachtchev, J. Lundell, and M. Räsänen, J. Phys. Chem. A 103, 679(1999).
    [28] S. J. Thompson, N. Goldberg, and B. S. Ault, PCCP 8, 856(2006).
    [29] X. Wang, L. Andrews, K. S. Thanthiriwatte, and D. A. Dixon, Inorg. Chem. 52, 10275(2013).
    [30] Q. Wang, J. Zhao, and X. Wang, J. Phys. Chem. A (2014).
    [31] Z. Pan, X. Liu, J. Zhao, and X. Wang, J. Mol. Spectrosc. 310, 16(2015).
    [32] L. Andrews, X. Wang, Y. Gong, G. P. Kushto, B. Vlaisavljevich, and L. Gagliardi, J. Phys. Chem. A 118, 5289(2014).
    [33] L. Andrews, Chem. Soc. Rev. 33, 123(2004).
    [34] X. Liu, X. Wang, B. Xu, and L. Andrews, PCCP 16, 2607(2014).
    [35] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision C.01, Wallingford CT:Gaussian, Inc., (2010).
    [36] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785(1988).
    [37] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244(1992).
    [38] K. A. Peterson, D. Figgen, M. Dolg, and H. Stoll, J. Chem. Phys. 126, (2007).
    [39] D. Figgen, K. A. Peterson, M. Dolg, and H. Stoll, J. Chem. Phys. 130, (2009).
    [40] D. E. Woon and T. H. Dunning, J. Chem. Phys. 100, 2975(1994).
    [41] D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358(1993).
    [42] M. Zhou, J. Dong, L. Zhang, and Q. Qin, J. Am. Chem. Soc. 123, 135(2000).
    [43] B. Liang and L. Andrews, J. Phys. Chem. A 106, 3738(2002).
    [44] C. H. Lai, M. Y. Lu, and L. J. Chen, J. Mater. Chem. 22, 19(2012).
    [45] X.F. Wang and L. Andrews, J. Phys. Chem. A 115, 14175(2002).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1162) PDF downloads(871) Cited by()

Proportional views
Related

Reactions of Group V Metal Atoms with Hydrogen Sulfide:Argon Matrix Infrared Spectra and Theoretical Calculations

doi: 10.1063/1674-0068/29/cjcp1511233

Abstract: The reaction of laser-ablated vanadium, niobium and tantalum atoms with hydrogen sulfide has been investigated using matrix isolation FTIR and theoretical calculations. The metal atoms inserted into the H-S bond of H2S to form the HMSH molecules (M=V, Nb, Ta), which rearranged to H2MS molecules on annealing for Nb and Ta. The HMSH molecule can also further react with another H2S to form the H2M(SH)2 molecules. These new molecules were identified on the basis of the D2S and H234S isotopic substitutions. DFT (B3LYP and BPW91) theoretical calculations are used to predict energies, geometries, and vibrational frequencies for these novel metal dihydrido complexes and molecules. Reaction mechanism for formation of group V dihydrido complex was investigated by DFT internal reaction coordinate calculations. The dissociation of HVSH gave VS+H2 on broad band irradiation and reverse reaction happened on annealing. Based on B3LYP calculation releasing hydrogen from HVSH is endothermic only by 13.5 kcal/mol with lower energy barrier of 16.9 kcal/mol.

Jie Zhao, Bing Xu, Wen-jie Yu, Xue-feng Wang. Reactions of Group V Metal Atoms with Hydrogen Sulfide:Argon Matrix Infrared Spectra and Theoretical Calculations[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 10-20. doi: 10.1063/1674-0068/29/cjcp1511233
Citation: Jie Zhao, Bing Xu, Wen-jie Yu, Xue-feng Wang. Reactions of Group V Metal Atoms with Hydrogen Sulfide:Argon Matrix Infrared Spectra and Theoretical Calculations[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 10-20. doi: 10.1063/1674-0068/29/cjcp1511233
Reference (45)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return