Guang-lai Zhu, Liang-wei Zhang, Yan-cheng Liu, Zhi-feng Cui, Xin-sheng Xu, Guo-zhong Wu. Laser Flash Photolysis Mechanism of Anthraquinone-2-Sodium Sulfonate in Pyridine Ionic Liquid/Water Mixed System[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 140-146. doi: 10.1063/1674-0068/29/cjcp1509192
Citation: Guang-lai Zhu, Liang-wei Zhang, Yan-cheng Liu, Zhi-feng Cui, Xin-sheng Xu, Guo-zhong Wu. Laser Flash Photolysis Mechanism of Anthraquinone-2-Sodium Sulfonate in Pyridine Ionic Liquid/Water Mixed System[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 140-146. doi: 10.1063/1674-0068/29/cjcp1509192

Laser Flash Photolysis Mechanism of Anthraquinone-2-Sodium Sulfonate in Pyridine Ionic Liquid/Water Mixed System

doi: 10.1063/1674-0068/29/cjcp1509192
  • Received Date: 2015-09-19
  • Rev Recd Date: 2015-12-07
  • The photochemical reaction process of anthraquinone-2-sodium sulfonate (AQS) in the mixture of water (H2O) and N-butylpyridinium tetrafluoroborate ([BPy][BF4]) was studied using the laser flash photolysis technique. Experimental results show that the excited triplet of AQS (3AQS*) could react rapidly with H2O and the transient absorption spectra greatly changed by increasing the volume fraction of the ionic liquid (VIL) in [BPy][BF4]/H2O mixtures. The absorbance at 510 nm increased gradually with increasing VIL when 0< VIL< 0.1. By contrast, the absorbance decreased gradually when VIL>0.1. Otherwise, the absorbance of the band near 380 nm steadily increased. The apparent kinetic parameters of transient species B and 3AQS* are obtained approximately. 3AQS* abstracting hydrogen from [BPy]+ was also explored. It was deduced that the 350-420 nm band was the superposition of the peaks of 3AQS* and AQSH·. The two reactions of 3AQS* with [BPy][BF4] and H2O are a pair of competitive reactions. We also concluded that the entire reaction processes slow down in the case of high [BPy][BF4] concentrations.
  • 加载中
  • [1] T. Welton, Chem. Rev. 99, 2071(1999).
    [2] F. Endres and S. Z. El Abedin, Phys. Chem. Chem. Phys. 8, 2101(2006).
    [3] R. D. Rogers and K. R. Seddon, Science 302, 792(2003).
    [4] M. J. Earle and K. R. Seddon, Pure Appl. Chem. 72, 1391(2000).
    [5] Z. Yang and W. Pan, Enzyme Microb. Technol. 37, 19(2005).
    [6] H. Zhao, S. Xia, and P. Ma, J. Chem. Technol. Biotechnol. 80, 1089(2005).
    [7] T. Yago, Y. Ishii, and M. Wakasa, J. Phys. Chem. C 118, 22356(2014).
    [8] S. Sarkar, R. Pramanik, D. Seth, P. Setua, and N. Sarkar, Chem. Phys. Lett. 477, 102(2009).
    [9] S. Sarkar, S. Mandal, C. Ghatak, V. G. Rao, S. Ghosh, and N. Sarkar, J. Phys. Chem. B 116, 1335(2012).
    [10] X. Li, M. Liang, A. Chakraborty, M. Kondo, and M. Maroncelli, J. Phys. Chem. B 115, 6592(2011).
    [11] M. Koch, A. Rosspeintner, G. Angulo, and E. Vauthey, J. Amer. Chem. Soc. 134, 3729(2012).
    [12] G. Zhu, Y. Wang, L. Zhang, Y. Liu, and G. Wu, Acta Phys. Chim. Sin. 31, 419(2015).
    [13] M. J. Muldoon, A. J. McLean, C. M. Gordon, and I. R. Dunkin, Chem. Commun. 2364(2001).
    [14] Y. Nishiyama, M. Fukuda, M. Terazima, and Y. Kimura, J. Chem. Phys. 128, 164514(2008).
    [15] I. Loeff, A. Treinin, and H. Linschitz, J. Phys. Chem. 87, 2536(1983).
    [16] I. Loeff, A. Treinin, and H. Linschitz, J. Phys. Chem. 88, 4931(1984).
    [17] I. Loeff, S. Goldstein, A. Treinin, and H. Linschitz, J. Phys. Chem. 95, 4423(1991).
    [18] J. N. Moore, D. Phillips, N. Nakashima, and K. Yoshihara, J. Chem. Soc. Faraday Trans. 82, 745(1986).
    [19] T. Ito, H. Shinohara, H. Hatta, S. Nishimoto, and S. Fujita, J. Phys. Chem. A 103, 8413(1999).
    [20] J. Ma, W. Lin, W. Wang, Z. Han, S. Yao, and N. Lin, Radiat. Phys. Chem. 54, 491(1999).
    [21] J. Ma, Nat. Sci. 6, 1(2014).
    [22] J. Ma, W. Lin, W. Wang, Z. Han, S. Yao, and N. Lin, Sci. China, Ser. B 45, 384(2002).
    [23] Z. Sheng, Y. Pan, L. Yan, X. Hei, Z. Guo, J. Dai, Q. Song, and S. Yu, J. Photochem. Photobiol. A 161, 99(2004).
    [24] K. P. Clark and H. I. Stonehill, J. Chem. Soc. Faraday Trans. 68, 577(1972).
    [25] P. R. Maddigapu, A. Bedini, C. Minero, V. Maurino, D. Vione, M. Brigante, G. Mailhot, and M. Sarakha, Photochem. Photobiol. Sci. 9, 323(2010).
    [26] A. Bedini, E. De Laurentiis, B. Sur, V. Maurino, C. Minero, M. Brigante, G. Mailhot, and D. Vione, Photochem. Photobiol. Sci. 11, 1445(2012).
    [27] C. Batchelor-McAuley, Q. Li, S. M. Dapin, and R. G. Compton, J. Phys. Chem. B 114, 4094(2010).
    [28] B. Mokhtarani, A. Sharifi, H. R. Mortaheb, M. Mirzaei, M. Mafi, and F. Sadeghian, J. Chem. Thermodynam. 41, 323(2009).
    [29] G. Zhu, Y. Wang, L. Zhang, Y. Luo, M. Sha, and X. Xu, J. Mol. Liq. 203, 153(2015).
    [30] S. Moribe, T. Ikoma, K. Akiyama, and S. Tero-Kubota, Chem. Phys. Lett. 457, 66(2008).
    [31] A. Wakisaka, T. W. Ebbesen, H. Sakuragi, and K. Tokumaru, J. Phys. Chem. 91, 6547(1987).
    [32] G. Zhu, J. Xu, G. Wu, H. Zhu, D. Long, S. Chen, and S. Yao, Int. J. Mol. Sci. 7, 590(2006).
    [33] H. Zhu, M. Wang, L. Cheng, R. Zhu, X. Sun, S. Yao, Q. Wu, and S. Wang, Acta Phys. Chim. Sin. 26, 87(2010).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(864) PDF downloads(608) Cited by()

Proportional views
Related

Laser Flash Photolysis Mechanism of Anthraquinone-2-Sodium Sulfonate in Pyridine Ionic Liquid/Water Mixed System

doi: 10.1063/1674-0068/29/cjcp1509192

Abstract: The photochemical reaction process of anthraquinone-2-sodium sulfonate (AQS) in the mixture of water (H2O) and N-butylpyridinium tetrafluoroborate ([BPy][BF4]) was studied using the laser flash photolysis technique. Experimental results show that the excited triplet of AQS (3AQS*) could react rapidly with H2O and the transient absorption spectra greatly changed by increasing the volume fraction of the ionic liquid (VIL) in [BPy][BF4]/H2O mixtures. The absorbance at 510 nm increased gradually with increasing VIL when 0< VIL< 0.1. By contrast, the absorbance decreased gradually when VIL>0.1. Otherwise, the absorbance of the band near 380 nm steadily increased. The apparent kinetic parameters of transient species B and 3AQS* are obtained approximately. 3AQS* abstracting hydrogen from [BPy]+ was also explored. It was deduced that the 350-420 nm band was the superposition of the peaks of 3AQS* and AQSH·. The two reactions of 3AQS* with [BPy][BF4] and H2O are a pair of competitive reactions. We also concluded that the entire reaction processes slow down in the case of high [BPy][BF4] concentrations.

Guang-lai Zhu, Liang-wei Zhang, Yan-cheng Liu, Zhi-feng Cui, Xin-sheng Xu, Guo-zhong Wu. Laser Flash Photolysis Mechanism of Anthraquinone-2-Sodium Sulfonate in Pyridine Ionic Liquid/Water Mixed System[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 140-146. doi: 10.1063/1674-0068/29/cjcp1509192
Citation: Guang-lai Zhu, Liang-wei Zhang, Yan-cheng Liu, Zhi-feng Cui, Xin-sheng Xu, Guo-zhong Wu. Laser Flash Photolysis Mechanism of Anthraquinone-2-Sodium Sulfonate in Pyridine Ionic Liquid/Water Mixed System[J]. Chinese Journal of Chemical Physics , 2016, 29(1): 140-146. doi: 10.1063/1674-0068/29/cjcp1509192
Reference (33)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return