Jian-zhong Fan, Shuai Qiu, Li-li Lin, Chuan-kui Wang. First-Principles Investigation on Triazine Based Thermally Activated Delayed Fluorescence Emitters[J]. Chinese Journal of Chemical Physics , 2016, 29(3): 291-296. doi: 10.1063/1674-0068/29/cjcp1508181
Citation: Jian-zhong Fan, Shuai Qiu, Li-li Lin, Chuan-kui Wang. First-Principles Investigation on Triazine Based Thermally Activated Delayed Fluorescence Emitters[J]. Chinese Journal of Chemical Physics , 2016, 29(3): 291-296. doi: 10.1063/1674-0068/29/cjcp1508181

First-Principles Investigation on Triazine Based Thermally Activated Delayed Fluorescence Emitters

doi: 10.1063/1674-0068/29/cjcp1508181
  • Received Date: 2015-08-26
  • Rev Recd Date: 2015-12-04
  • Three kinds of triazine based organic molecules designed for thermally activated delayed fluorescence (TADF) emitters are investigated by first-principles calculations. An optimal Hartree-Fork (HF) method is adopted for the calculation of energy gap between the first singlet state (S1) and the first triplet state (T1). The natural transition orbital, the electronhole (e-h) distribution and the e-h overlap diagram indicate that the S1 states for the three systems include both charge-transfer and some localized excitation component. Further quantitative analysis of the excitation property is performed by introducing the index Δr and the integral of e-h overlap S. It is found that symmetric geometry is a necessary condition for TADF emitters, which can provide more delocalized transition orbitals and consequently a small S1-T1 energy gap. Artful inserting aromatic groups between donors and acceptors can significantly enhance the oscillator strength. Finally, the energy state structures calculated with the optimal HF method is presented, which can provide basis for the study of the dynamics of excited states.
  • 加载中
  • [1] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 395, 151 (1998).
    [2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990).
    [3] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, Nature 459, 234 (2009).
    [4] Y. Tao, K. Yuan, T. Chen, P. Xu, H. H. Li, R. F. Chen, C. Zheng, L. Zhang, and W. Huang, Adv. Mater. 26, 7931 (2014).
    [5] Q. S. Zhang, H. Kuwabara, W. J. J. Potscavage, S. P. Huang, Y. Hatae, T. Shibata, and C. Adachi, J. Am. Chem. Soc. 136, 18070 (2014).
    [6] M. Taneda, K. Shizu, H. Tanaka, and C. Adachi, Chem. Commun. 51, 5028 (2015).
    [7] Q. S. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, and C. Adachi, J. Am. Chem. Soc. 134, 14706 (2012).
    [8] S. P. Huang, Q. S. Zhang, Y. Shiota, T. Nakagawa, K. Kuwabara, K. Yoshizawa, and C. Adachi, J. Chem. Theory Comput. 9, 3872 (2013).
    [9] G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01, Wallingford CT, USA: Gaussian Inc. (2013).
    [10] T. Lu and F. W. Chen, J. Comput. Chem. 33, 580 (2012).
    [11] T. Y. Sae Youn Lee, H. Nomura, and C. Adachi, Appl. Phys. Lett 101, 093306 (2012).
    [12] Y. Z. Li, Y. Sun, Y. Q. Li, and F. C. Ma, Chin. J. Chem. Phys. 20, 59 (2007).
    [13] Q. Li, F. Q. Huang, J. D. Hu, and K. Q. Zhao, Chin. J. Chem. Phys. 19, 401 (2006).
    [14] A. Dreuw and M. Head Gordon, J. Am. Chem. Soc. 126, 4007 (2004).
    [15] A. Dreuw and M. Head Gordon, Chem. Rev. 105, 4009 (2005).
    [16] P. Comba Ed., Modeling of Molecular Properties, Weinheim: Wiley VCH, 37 (2011).
    [17] C. A. Guido, P. Cortona, B. Mennucci, and C. Adamo, J. Chem. Theory Comput. 9, 3118 (2013).
    [18] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
    [19] L. Goerigk and S. Grimme, J. Chem. Phys. 132, 184103 (2010).
    [20] S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S. Y. Lee, H. Nomura, N. Nakamura, M. Yasumatsu, H. Nakanotani, Q. Zhang, K. Shizu, H. Miyazaki, and C. Adachi, Nat. Mater. 14, 330 (2015).
    [21] C. A. Guido, S. Knecht, J. Kongsted, and B. Mennucci. J. Chem. Theory Comput. 9, 2209 (2013).
    [22] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature 492, 234 (2012).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1096) PDF downloads(868) Cited by()

Proportional views
Related

First-Principles Investigation on Triazine Based Thermally Activated Delayed Fluorescence Emitters

doi: 10.1063/1674-0068/29/cjcp1508181

Abstract: Three kinds of triazine based organic molecules designed for thermally activated delayed fluorescence (TADF) emitters are investigated by first-principles calculations. An optimal Hartree-Fork (HF) method is adopted for the calculation of energy gap between the first singlet state (S1) and the first triplet state (T1). The natural transition orbital, the electronhole (e-h) distribution and the e-h overlap diagram indicate that the S1 states for the three systems include both charge-transfer and some localized excitation component. Further quantitative analysis of the excitation property is performed by introducing the index Δr and the integral of e-h overlap S. It is found that symmetric geometry is a necessary condition for TADF emitters, which can provide more delocalized transition orbitals and consequently a small S1-T1 energy gap. Artful inserting aromatic groups between donors and acceptors can significantly enhance the oscillator strength. Finally, the energy state structures calculated with the optimal HF method is presented, which can provide basis for the study of the dynamics of excited states.

Jian-zhong Fan, Shuai Qiu, Li-li Lin, Chuan-kui Wang. First-Principles Investigation on Triazine Based Thermally Activated Delayed Fluorescence Emitters[J]. Chinese Journal of Chemical Physics , 2016, 29(3): 291-296. doi: 10.1063/1674-0068/29/cjcp1508181
Citation: Jian-zhong Fan, Shuai Qiu, Li-li Lin, Chuan-kui Wang. First-Principles Investigation on Triazine Based Thermally Activated Delayed Fluorescence Emitters[J]. Chinese Journal of Chemical Physics , 2016, 29(3): 291-296. doi: 10.1063/1674-0068/29/cjcp1508181
Reference (22)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return