Lin Gu, Ji-heng Ding, Shuan Liu, Hai-bin Yu. Incorporation of Reactive Corrosion Inhibitor in Waterborne Acrylic Polyurethane Coatings and Evaluation of its Corrosion Performance[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 271-278. doi: 10.1063/1674-0068/29/cjcp1507156
Citation: Lin Gu, Ji-heng Ding, Shuan Liu, Hai-bin Yu. Incorporation of Reactive Corrosion Inhibitor in Waterborne Acrylic Polyurethane Coatings and Evaluation of its Corrosion Performance[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 271-278. doi: 10.1063/1674-0068/29/cjcp1507156

Incorporation of Reactive Corrosion Inhibitor in Waterborne Acrylic Polyurethane Coatings and Evaluation of its Corrosion Performance

doi: 10.1063/1674-0068/29/cjcp1507156
  • Received Date: 2015-07-20
  • Rev Recd Date: 2015-11-07
  • Hydroxyl-epoxy phosphate (HEP) as a reactive corrosion inhibitor was innovatively synthesized by the reaction of bisphenol A epoxy resin with phosphoric acid. HEP was mixed with hydroxyl acrylate resin, and crosslinked with waterborne isocyanate curing agent, which was used to form waterborne HEP/acrylic polyurethane composite (HEP-APU) coatings on Q235 steel surfaces. Electrochemical impedance spectroscopy and polarization curves were applied to analyze the corrosion behavior of the HEP-APU coatings in 3.5wt% NaCl solutions. The results indicated that the HEP-APU coatings show a superior passivation property and efficient corrosion protection of Q235 steel. The waterborne acrylic polyurethane coating containing 0.5wt% HEP exhibited the best corrosion performance among all the coating specimens. The improved flash-rust resistance can be attributed to the introduction of the phosphate group which could form phosphate film on the steel substrate.
  • 加载中
  • [1] C. Fu, T. X. Zhang, C. Q. Ji, F. Cheng, W. Z. Cui, and Y. Chen, Chin. J. Polym. Sci., 33, 14 (2015).
    [2] C. W. Lai, Y. Sun, H. Yang, X. Q. Zhang, and B. P. Lin, Acta Chim. Sin. 71, 1201 (2013).
    [3] M. Liu, X. H. Mao, H. Zhu, A. Lin, and D. H. Wang, Corros. Sci. 75, 106 (2013).
    [4] M. Hirose, J. Zhou, and K. Nagai, Prog. Org. Coat. 38, 34 (2000).
    [5] J. Taylor and M. Winnik, J. Coat. Technol. Res. 1, 163 (2004).
    [6] T. Yu and C. T. Lin, Ind. Eng. Chem. Res. 36, 368 (1997).
    [7] C. T. Lin, Prog. Org. Coat. 42, 226 (2001).
    [8] H. Neuder, C. Sizemore, M. Kolody, R. Chiang, and C. T. Lin, Prog. Org. Coat. 47, 225 (2003).
    [9] I. González, D. Mestach, J. R. Leiza, and J. M. Asua, Prog. Org. Coat. 61, 38 (2008).
    [10] H. S. Yang, H. Adam, and J. Kiplinger, JCT Coat. Technol. 2, 44 (2005).
    [11] Z. Zhong, Q. Yu, H. Yao, W. Wu, W. Feng, L. Yu, and Z. Xu, Prog. Org. Coat. 76, 858 (2013).
    [12] Y. F. Li, J. J. Zhu, X. H. Gao, and Z. M. Yu, J. Macromol. Sci. A 50, 248 (2013).
    [13] Y. Liu, C. Zhang, Z. Du, and H. Li, J. Appl. Polym. Sci. 99, 858 (2006).
    [14] L. Gu, Y. Qin, Y. Gao, X. Wang, and F. Wang, J. Polym. Sci. Part A 51, 2834 (2013).
    [15] C. Liu, Q. Bi, and A. Matthews, Corros. Sci. 43, 1953 (2001).
    [16] L. Gu, S. Liu, H. Zhao, and H. Yu, RSC Adv. 5, 56011 (2015).
    [17] T. T. Hang, T. A. Truc, N. T. Duong, N. Pébère, and M. G. Olivier, Prog. Org. Coat. 74, 343 (2012).
    [18] S. Liu, H. Sun, N. Zhang, and L. Sun, Int. J. Corros. 2013, 1 (2013).
    [19] H. Y. Sun, S. Liu, and L. J. Sun, Int. J. Electrochem. Sci. 8, 3494 (2013).
    [20] S. Liu, H. Sun, L. Sun, and H. Fan, Corros. Sci. 65, 520 (2012).
    [21] F. Alcaide, E. Brillas, and P. L. Cabot, J. Electroanal. Chem. 547, 61 (2003).
    [22] L. Gu, S. Liu, H. Zhao, and H. Yu, ACS Appl. Mater. Interfaces 7, 17641 (2015).
    [23] Y. Zhang, Y. Shao, T. Zhang, G. Meng, and F. Wang, Prog. Org. Coat. 76, 804 (2013).
    [24] H. Wei, D. Ding, S. Wei, and Z. Guo, J. Mater. Chem. A 1, 10805 (2013).
    [25] C. Y. Tsai, J. S. Liu, P. L. Chen, and C. S. Lin, Surf. Coat. Tech. 205, 5124 (2011).
    [26] M. A. Amin, K. F. Khaled, and S. A. Fadl-Allah, Corros. Sci. 52, 140 (2010).
    [27] B. Qian, J. Wang, M. Zheng, and B. Hou, Corros. Sci. 75, 184 (2013).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(889) PDF downloads(569) Cited by()

Proportional views
Related

Incorporation of Reactive Corrosion Inhibitor in Waterborne Acrylic Polyurethane Coatings and Evaluation of its Corrosion Performance

doi: 10.1063/1674-0068/29/cjcp1507156

Abstract: Hydroxyl-epoxy phosphate (HEP) as a reactive corrosion inhibitor was innovatively synthesized by the reaction of bisphenol A epoxy resin with phosphoric acid. HEP was mixed with hydroxyl acrylate resin, and crosslinked with waterborne isocyanate curing agent, which was used to form waterborne HEP/acrylic polyurethane composite (HEP-APU) coatings on Q235 steel surfaces. Electrochemical impedance spectroscopy and polarization curves were applied to analyze the corrosion behavior of the HEP-APU coatings in 3.5wt% NaCl solutions. The results indicated that the HEP-APU coatings show a superior passivation property and efficient corrosion protection of Q235 steel. The waterborne acrylic polyurethane coating containing 0.5wt% HEP exhibited the best corrosion performance among all the coating specimens. The improved flash-rust resistance can be attributed to the introduction of the phosphate group which could form phosphate film on the steel substrate.

Lin Gu, Ji-heng Ding, Shuan Liu, Hai-bin Yu. Incorporation of Reactive Corrosion Inhibitor in Waterborne Acrylic Polyurethane Coatings and Evaluation of its Corrosion Performance[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 271-278. doi: 10.1063/1674-0068/29/cjcp1507156
Citation: Lin Gu, Ji-heng Ding, Shuan Liu, Hai-bin Yu. Incorporation of Reactive Corrosion Inhibitor in Waterborne Acrylic Polyurethane Coatings and Evaluation of its Corrosion Performance[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 271-278. doi: 10.1063/1674-0068/29/cjcp1507156
Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return