Ai-min Hao, Jing Bai, Shao-hua Luo, Xi-wei Qi. First Principles Investigation of Electronic Property and High Pressure Phase Stability of SmN[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 219-222. doi: 10.1063/1674-0068/29/cjcp1507143
Citation: Ai-min Hao, Jing Bai, Shao-hua Luo, Xi-wei Qi. First Principles Investigation of Electronic Property and High Pressure Phase Stability of SmN[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 219-222. doi: 10.1063/1674-0068/29/cjcp1507143

First Principles Investigation of Electronic Property and High Pressure Phase Stability of SmN

doi: 10.1063/1674-0068/29/cjcp1507143
  • Received Date: 2015-07-07
  • Rev Recd Date: 2015-10-08
  • An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The electronic properties of SmN show a striking feature of a half metal, the majority-spin electrons are metallic and the minority-spin electrons are semiconducting. It was found that SmN undergoes a pressure-induced phase transition from NaCl-type (B1) to CsCl-type structure (B2) at 117 GPa. The elastic constants of SmN satisfy Born conditions at ambient pressure, indicating that B1 phase of SmN is mechanically stable at 0 GPa. The result of phonon spectra shows that B1 structure is dynamically stable at ambient pressure, which agrees with the conclusion derived from the elastic constants.
  • 加载中
  • [1] H. Ohno, Science 291, 840 (2001).
    [2] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
    [3] C. M. Aerts, P. Strange, M. Horne, W. M. Temmer-man, Z. Szotek, and A. Svane, Phys. Rev. B 69, 045115 (2004).
    [4] A. R. H. Preston, S. Granville, D. H. Housden, B. Lud-brook, B. J. Ruck, H. J. Trodahl, A. Bittar, G. V. M. Williams, J. E. Downes, A. DeMasi, Y. Zhang, K. E. Smith, and W. R. L. Lambrecht, Phys. Rev. B 76, 245120 (2007).
    [5] P. Larson, W. R. L. Lambrecht, A. Chantis, and M. van Schifgaarde, Phys. Rev. B 75, 045114 (2007).
    [6] F. Hulliger, Handbook on the Physics and Chemistry of Rare Earths, New York: North-Holland, (1978).
    [7] R. Moon and W. Koehler, J. Magn. Magn. Mater. 14, 265 (1979).
    [8] E. M. Anton, B. J. Ruck, C. Meyer, F. Natali, H. War-ring, F. Wilhelm, A. Rogalev, V. N. Antonov, and H. J. Trodahl, Phys. Rev. B 87, 134414 (2013).
    [9] G. Vaitheeswaran, V. Kanchana, and M. Rajagopalan, Solid State Commun. 124, 97 (2002).
    [10] A. Svane, Z. Szotek, W. M. Temmerman, J. L. L gs-gaard, and H. Winter, J. Phys.: Condens. Matter 10, 5309 (1998).
    [11] A. Rukmangad, M. Aynyas, and S. P. Sanyal, Indian J. Pure Appl. Phys. 47, 114 (2009).
    [12] P. Pandit, V. Srivastava, M. Rajagopalan, and S. P. Sanyal, Physica B 403, 4333 (2008).
    [13] J. M. Jakobsen, G. K. H. Madsen, J. E. J gensen, J. Staun Olsen, and L. Gerward, Solid State Commun. 121, 447 (2002).
    [14] Y. O. Ciftci, K. Çolakoglu, E. Deligoz, and H. Ozisik, Mater. Chem. Phys. 108, 120 (2008).
    [15] A. Hao, X. Yang, L. Zhang, and Y. Zhu, J. Phys. Chem. Solid 74, 1504 (2013).
    [16] J. Yang, F. Gao, H. Wang, H. Gou, X. Hao, and Z. Li, Mater. Chem. Phys. 119, 499 (2010).
    [17] J. Yang, Ph.D. Dissertation, Qinhuangdao: Yanshan University, (2010).
    [18] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Z. Kristal-logr. 220, 567 (2005).
    [19] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    [20] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
    [21] P. W. Anderson, Rev. Mod. Phys. 50, 191 (1978).
    [22] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).
    [23] V. N. Antonov, B. N. Harmon, A. N. Yaresko, and A. P. Shpak, Phys. Rev. B 75, 184422 (2007).
    [24] J. Jensen and A. R. Mackintosh, Rare Earth Mag-netism. Oxford: Oxford Science, (1991).
    [25] A. Hao and Y. Zhu, J. Appl. Phys. 112, 023519 (2012).
    [26] Y. Ma, A. R. Oganov, Z. Li, Y. Xie, and J. Kotakoski, Phys. Rev. Lett. 102, 065501 (2009).
    [27] J. Hanies, J. M. Léger, and G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(862) PDF downloads(632) Cited by()

Proportional views
Related

First Principles Investigation of Electronic Property and High Pressure Phase Stability of SmN

doi: 10.1063/1674-0068/29/cjcp1507143

Abstract: An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The electronic properties of SmN show a striking feature of a half metal, the majority-spin electrons are metallic and the minority-spin electrons are semiconducting. It was found that SmN undergoes a pressure-induced phase transition from NaCl-type (B1) to CsCl-type structure (B2) at 117 GPa. The elastic constants of SmN satisfy Born conditions at ambient pressure, indicating that B1 phase of SmN is mechanically stable at 0 GPa. The result of phonon spectra shows that B1 structure is dynamically stable at ambient pressure, which agrees with the conclusion derived from the elastic constants.

Ai-min Hao, Jing Bai, Shao-hua Luo, Xi-wei Qi. First Principles Investigation of Electronic Property and High Pressure Phase Stability of SmN[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 219-222. doi: 10.1063/1674-0068/29/cjcp1507143
Citation: Ai-min Hao, Jing Bai, Shao-hua Luo, Xi-wei Qi. First Principles Investigation of Electronic Property and High Pressure Phase Stability of SmN[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 219-222. doi: 10.1063/1674-0068/29/cjcp1507143
Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return