Jian-yang Hu, Guo-li Zhu. Photocatalytic Activity Improvement of g-C3N4 under Visible Light by Optimizing Preparation Conditions[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 234-240. doi: 10.1063/1674-0068/29/cjcp1506123
Citation: Jian-yang Hu, Guo-li Zhu. Photocatalytic Activity Improvement of g-C3N4 under Visible Light by Optimizing Preparation Conditions[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 234-240. doi: 10.1063/1674-0068/29/cjcp1506123

Photocatalytic Activity Improvement of g-C3N4 under Visible Light by Optimizing Preparation Conditions

doi: 10.1063/1674-0068/29/cjcp1506123
  • Received Date: 2015-06-09
  • Rev Recd Date: 2015-09-21
  • Graphite-like C3N4 (g-C3N4) is ané cient visible-light-driven photocatalyst which is com-monly used in pollutant degradation. The photoreactivity of g-C3N4 depends on the prepa-ration conditions to a large extent. In this work, we linked the preparation conditions of g-C3N4 to its stability and photocatalytic activity through dye photodegradation experi-ments and sensitivity mathematical analyses. The sensitivity mathematical analyses show that the effect of calcination temperature is more significant than calcination time on the photoreactivity of g-C3N4. The photocatalytic activity of optimized g-C3N4 in rhodamine B (RhB) degradation under visible light was 100 times higher than that of non-optimized one. The enhanced performance can be attributed to the increased specific surface area of g-C3N4 and the increased migration velocity of photogenerated electron-hole pairs on the surface. This work deepens the understanding of the relation between preparation conditions and the charateristics of g-C3N4, and provides an extremely simple method for significantly improving the photoreactivity of g-C3N4.
  • 加载中
  • [1] J. Zhao, C. Chen, and W. Ma, Top. Catal. 35, 269 (2005).
    [2] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 95, 69 (1995).
    [3] H. Gnayem and Y. Sasson, ACS Catal. 3, 186 (2013).
    [4] L. Ma-Hock, S. Brill, W.Wohlleben, P. M. A. Farias, C. R. Chaves, D. P. L. A. Tenrio, A. Fontes, B. S. Santos,R. Landsiedel, V. Strauss, S. Treumann, and B. van Ravenzwaay, Toxicol. Lett. 208, 115 (2012).
    [5] M. Li, S. Pokhrel, X. Jin, L. Madler, R. Damoiseaux, and E. M. V. Hoek, Environ. Sci. Technol. 45, 755 (2011).
    [6] I. K. Konstantinou and T. A. Albanis, Appl. Catal. B 49, 1 (2004).
    [7] K. Maeda, J. Phys. Chem. C 113, 4940 (2009).
    [8] G. H. Dong and L. Z. Zhang, J. Mater. Chem. 22, 1160 (2012).
    [9] S. Yan, Z. Li, and Z. Zou, Langmuir 25, 10397 (2009).
    [10] L. Ge, C. Han, and J. Liu, Appl. Catal. B 108, 100 (2011).
    [11] S. C. Lee, H. O. Lintang, and L. Yuliati, Chem. Asian J. 7, 2139 (2012).
    [12] Y. Wang, X. Wang, and M. Antonietti, Angew. Chem. Int. Ed. 51, 68 (2012).
    [13] Y. Zheng, J. Liu, J. Liang, M. Jaroniecc, and S. Qiao, Energy Environ. Sci. 5, 6717 (2012).
    [14] Y. Zhang, T. Mori, J. Ye, and M. Antonietti, J. Am. Chem. Soc. 132, 6294 (2010).
    [15] X.Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, and M. Antonietti, J. Am. Chem. Soc. 131, 1680 (2009).
    [16] H. Yan, Chem. Commun. 48, 3430 (2012).
    [17] X. Wang, X. Chen, A. Thomas, X. Fu, and M. Antonietti, Adv. Mater. 21, 1609 (2009).
    [18] G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen, G. Lu, and H. Cheng, J. Am. Chem. Soc. 132, 11642 (2010).
    [19] Q. Xiang, J. Yu, and M. Jaroniec, J. Phys. Chem. C 115, 7355 (2011).
    [20] H. Yan and H. Yang, J. Alloys Compd. 509, 26 (2011).
    [21] X. Xu, G. Liu, C. Randorn, and J. T. S. Irvine, Int. J. Hydrogen Energ. 36, 13501 (2011).
    [22] F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee, J. Mater. Chem. 21, 15171 (2011).
    [23] X. Zhang, J. Hu, and H. Jiang, Chem. Eng. J. 256, 230 (2014).
    [24] R. W. Ramette and E. B. Sandell, J. Am. Chem. Soc. 78, 4872 (1956).
    [25] S. C. Yan, Z. S. Li, and Z. G. Zou, Langmuir 26, 3894 (2010).
    [26] G. Dong, K. Zhao, and L. Zhang, Chem. Commun. 48, 6178 (2012).
    [27] Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang, and J. Qiu, Sci. Rep. 3, 1 (2013).
    [28] X. Li, J. Zhang, L. Shen, Y. Ma, W. Lei, Q. Cui, and G. Zou, Appl. Phys. A 94, 387 (2009).
    [29] R. Nuzzo, Nature 506, 150 (2014).
    [30] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. Muller, R. Schlogl, and J. M. Carlsson, J. Mater. Chem. 18, 4893 (2008).
    [31] N. C. Castillo, A. Heel, T. Graule, and C. Pulgarin, Appl. Catal. B 95, 335 (2010).
    [32] F. Dong, S. Guo, H. Wang, X. Li, and Z. Wu, J. Phys. Chem. C 115, 13285 (2011).
    [33] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, Nat. Mater. 8, 76 (2009).
    [34] Y. Zhang, J. Liu, G. Wu, and W. Chen, Nanoscale 4, 5300 (2012).
    [35] L. Ge and C. Han, Appl. Catal. B 117, 268 (2012).
    [36] W. Lei, D. Portehault, R. Dimova, and M. Antonietti, J. Am. Chem. Soc. 133, 7121 (2011).
    [37] P. Niu, L. Zhang, G. Liu, and H. M. Cheng, Adv. Funct. Mater. 22, 4763 (2012).
    [38] K. Hideki and A. Kudo, J. Phys. Chem. B 106, 5029 (2002).
    [39] F. Cardon and W. P. Gomes, J. Phys. D 11, 63 (1978).
    [40] K. Gelderman, L. Lee, and S. W. Donne, J. Chem. Educ. 84, 685 (2007).
    [41] F. Amano, K. Nogami, M. Tanaka, and B. Ohtani, Langmuir 26, 7174 (2010).
    [42] C. Baumanis and D. W. Bahnemann, J. Phys. Chem. C 112, 19097 (2008).
    [43] J. Wang, P. Guo, M. Dou, Y. Cheng, P. G. Jönsson, and Z. Zhao, RSC Adv. 4, 51008 (2014).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1048) PDF downloads(607) Cited by()

Proportional views
Related

Photocatalytic Activity Improvement of g-C3N4 under Visible Light by Optimizing Preparation Conditions

doi: 10.1063/1674-0068/29/cjcp1506123

Abstract: Graphite-like C3N4 (g-C3N4) is ané cient visible-light-driven photocatalyst which is com-monly used in pollutant degradation. The photoreactivity of g-C3N4 depends on the prepa-ration conditions to a large extent. In this work, we linked the preparation conditions of g-C3N4 to its stability and photocatalytic activity through dye photodegradation experi-ments and sensitivity mathematical analyses. The sensitivity mathematical analyses show that the effect of calcination temperature is more significant than calcination time on the photoreactivity of g-C3N4. The photocatalytic activity of optimized g-C3N4 in rhodamine B (RhB) degradation under visible light was 100 times higher than that of non-optimized one. The enhanced performance can be attributed to the increased specific surface area of g-C3N4 and the increased migration velocity of photogenerated electron-hole pairs on the surface. This work deepens the understanding of the relation between preparation conditions and the charateristics of g-C3N4, and provides an extremely simple method for significantly improving the photoreactivity of g-C3N4.

Jian-yang Hu, Guo-li Zhu. Photocatalytic Activity Improvement of g-C3N4 under Visible Light by Optimizing Preparation Conditions[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 234-240. doi: 10.1063/1674-0068/29/cjcp1506123
Citation: Jian-yang Hu, Guo-li Zhu. Photocatalytic Activity Improvement of g-C3N4 under Visible Light by Optimizing Preparation Conditions[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 234-240. doi: 10.1063/1674-0068/29/cjcp1506123
Reference (43)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return