Han Miao, Hong-ru Ma. Confinement Induced Ordering in Fluid of Hard Ellipsoids[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 212-218. doi: 10.1063/1674-0068/29/cjcp1506119
Citation: Han Miao, Hong-ru Ma. Confinement Induced Ordering in Fluid of Hard Ellipsoids[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 212-218. doi: 10.1063/1674-0068/29/cjcp1506119

Confinement Induced Ordering in Fluid of Hard Ellipsoids

doi: 10.1063/1674-0068/29/cjcp1506119
  • Received Date: 2015-06-07
  • Rev Recd Date: 2015-10-18
  • The ordering configurations of a fluid of anisotropic ellipsoids under the confinement of two apposing impenetrable walls are studied by Monte Carlo simulations. The excess adsorption of the fluid on the walls with respect to the aspect ratio has a maximum at the critical aspect ratio of 2.9 in high-density ellipsoid fluids, indicating an orientational ordering in the adjacent region of the walls, which is confirmed by probing into the density configurations and the orientational order parameter in the adjacent region of the walls for varying aspect ratios. In addition, the orientational order parameter in the bulk fluid at the same density is calculated, and it indicates an isotropic state as the bulk density is still below the bulk isotropic-to-nematic transition. Therefore, it can be concluded that the anisotropic ordering near the walls in the ellipsoid fluid that exhibits isotropic in the bulk is induced by the confinement effect of the walls.
  • 加载中
  • [1] D. E. Sullivan and G. Stell, J. Chem. Phys. 69, 5450 (1978).
    [2] J. C. Neu, Phys. Rev. Lett. 82, 1072 (1999).
    [3] C. N. Patra and S. K. Ghost, J. Chem. Phys. 106, 2752 (1997).
    [4] R. D. Groot, N. M. Faber, and J. P. van der Eerdenn, Mol. Phys. 62, 861 (1987).
    [5] V. M. Bedanov and F. M. Peeters, Phys. Rev. B 49, 2667 (1994).
    [6] V. A. Schweigert and F. M. Peeters, Phys. Rev. B 51, 7700 (1995).
    [7] R. Zangi, J. Phys.: Condens. Matter 16, S5371 (2004).
    [8] B. Götzelmann, A. Haase, and S. Dietrich, Phys. Rev. E. 53, 3456 (1996).
    [9] R. Roth, R. Evans, A. Lang, and G. Kahl, J. Phys.: Condens. Matter 14, 12063 (2002).
    [10] Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
    [11] B. H. Lin, J. Yu, and S. A. Rice, Phys. Rev. E 62, 3909 (2000).
    [12] H. Reiss, H. L. Frisch, E. Helfand, and J. L. Lebowitz, J. Chem. Phys. 32, 119 (1960).
    [13] P. Tarazona, Phys. Rev. A 31, 2672 (1985).
    [14] A. Donev, J. Burton, F. H. Stillinger, and S. Torquato, Phys. Rev. B 73, 054109 (2006).
    [15] T. Schilling, S. Pronk, B. M. Mulder, and D. Frenkel, Phys. Rev. E 71, 036138 (2005).
    [16] R. Blaak, B. M. Mulder, and D. Frenkel, J. Chem. Phys. 120, 5486 (2004).
    [17] Y. Li, H. Miao, H. R. Ma, and J. Z. Y. Chen, Soft Matter 9, 11461 (2013).
    [18] C. Avendano and F. A. Escobedo, Soft Matter 8, 4675 (2012).
    [19] K. Wojciechowski and D. Frenkel, Comp. Met. Sci. Technol. 10, 235 (2004).
    [20] M. A. Bates and D. Frenkel, J. Chem. Phys. 112, 10034 (2000).
    [21] P. G. Bolhuis and D. Frenkel, J. Chem. Phys. 106, 666 (1997).
    [22] A. G. Moreira and R. R. Netz, Euro. Phys. J. E 8, 33 (2002).
    [23] P. P eiderer and T. Schilling, Phys. Rev. E 75, 020402(R) (2007).
    [24] A. P. Cohen, E. Janai, E. Mogilko, A. B. Scho eld, and E. Sloutskin, Phys. Rev. Lett. 107, 238301 (2011).
    [25] D. J. Cleaver and P. I. C. Teixeira, Chem. Phys. Lett. 338, 1 (2001).
    [26] P. I. C. Teixeira, F. Barmes, F. C. Anquetil-Deck, and D. J. Cleaver, Phys. Rev. E 79, 011709 (2009).
    [27] F. Barmes and D. J. Cleaver, Phys. Rev. E 71, 021705 (2005).
    [28] F. Barmes and D. J. Cleaver, Phys. Rev. E 69, 061705 (2004).
    [29] M. Moradi, R. J. Wheatley, and A. Avazpour, Phys. Rev. E 72, 061706 (2005).
    [30] P. I. C. Teixeira, A. Chrzanowska, G. D. Wall, and D. J. Cleaver, Mol. Phys. 99, 889 (2001).
    [31] G. W. Wall and D. J. Cleaver, Mol. Phys. 101, 1105 (2003).
    [32] G. W. Wall and D. J. Cleaver, Phys. Rev. E 56, 4306 (1997).
    [33] W. H. Li and H. R. Ma, J. Chem. Phys. 119, 585 (2003).
    [34] D. Frenkel, B. M. Mulder, and J. P. McTague, Phys. Rev. Lett. 52, 287 (1984).
    [35] J. Talbot, D. Kivelson, M. P. Allen, G. T. Evans, and D. Frenkel, J. Chem. Phys. 92, 3048 (1990).
    [36] P. A. Kralchevsky and K. Nagayama, Adv. Colloid Interface Sci. 85, 145 (2000).
    [37] M. Breuer, J. Bernsdorf, T. Zeiser, and F. Durst, Internat. J. Heta Fluid 21, 186 (2000).
    [38] M. S. Searle and D. H. Williams, J. Am. Chem. Soc. 114, 10690 (1992).
    [39] H. Miao, Y. Li, and H. R. Ma, J. Chem. Phys. 140, 154904 (2014).
    [40] B. Götzelmann, R. Roth, S. Dietrich, M. Dijkstra, and R. Evans, Europhys. Lett. 47, 398 (1999).
    [41] R. Roth and S. Dietrich, Phys. Rev. E 62, 6926 (2000).
    [42] J. R. Henderson and F. van Swol, Mol. Phys. 51, 991 (1984).
    [43] U. Fabbri and C. Zannoni, Mol. Phys. 58, 763 (1996).
    [44] D. Frenkel and B. Smit, Understanding Molecular Sim-ulation, New York: Academic Press, A Division of Harcourt Inc., (2002).
    [45] W. F. van Gunsteren and A. E. Mark, J. Chem. Phys. 108, 6109 (1998).
    [46] W. F. van Gunsteren, J. Dolenc, and A. E. Mark, Curr. Opin. Struct. Biol. 18, 149 (2008).
    [47] X. G. Hong and K. Tamura, Chin. Phys. Lett. 20, 1315 (2003).
    [48] D. Frenkel and B. M. Mulder, Mol. Phys. 55, 1171 (1985).
    [49] X. Zheng, W. Iglesias, and P. Pal y-Muhoray, Phys. Rev. E 79, 057702 (2009).
    [50] M. Baus, J. L. Colot, X. G. Wu, and H. Xu, Phys. Rev. Lett. 59, 2184 (1987).
    [51] R. Holyst and A. Poniewierski, Mol. Phys. 68, 381 (1989).
    [52] U. P. Singh and Y. Singh, Phys. Rev. A 33, 2725 (1986).
    [53] J. F. Marko, Phys. Rev. Lett. 60, 325 (1988).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(785) PDF downloads(664) Cited by()

Proportional views
Related

Confinement Induced Ordering in Fluid of Hard Ellipsoids

doi: 10.1063/1674-0068/29/cjcp1506119

Abstract: The ordering configurations of a fluid of anisotropic ellipsoids under the confinement of two apposing impenetrable walls are studied by Monte Carlo simulations. The excess adsorption of the fluid on the walls with respect to the aspect ratio has a maximum at the critical aspect ratio of 2.9 in high-density ellipsoid fluids, indicating an orientational ordering in the adjacent region of the walls, which is confirmed by probing into the density configurations and the orientational order parameter in the adjacent region of the walls for varying aspect ratios. In addition, the orientational order parameter in the bulk fluid at the same density is calculated, and it indicates an isotropic state as the bulk density is still below the bulk isotropic-to-nematic transition. Therefore, it can be concluded that the anisotropic ordering near the walls in the ellipsoid fluid that exhibits isotropic in the bulk is induced by the confinement effect of the walls.

Han Miao, Hong-ru Ma. Confinement Induced Ordering in Fluid of Hard Ellipsoids[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 212-218. doi: 10.1063/1674-0068/29/cjcp1506119
Citation: Han Miao, Hong-ru Ma. Confinement Induced Ordering in Fluid of Hard Ellipsoids[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 212-218. doi: 10.1063/1674-0068/29/cjcp1506119
Reference (53)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return