Ya-ping Wang, Fu-sheng Liu, Qi-jun Liu, Ning-chao Zhan. Raman Spectra of Liquid Nitromethane under Singly Shocked Conditions[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 161-166. doi: 10.1063/1674-0068/29/cjcp1503037
Citation: Ya-ping Wang, Fu-sheng Liu, Qi-jun Liu, Ning-chao Zhan. Raman Spectra of Liquid Nitromethane under Singly Shocked Conditions[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 161-166. doi: 10.1063/1674-0068/29/cjcp1503037

Raman Spectra of Liquid Nitromethane under Singly Shocked Conditions

doi: 10.1063/1674-0068/29/cjcp1503037
  • Received Date: 2015-03-11
  • Rev Recd Date: 2015-10-10
  • Raman spectra of liquid nitromethane were measured in single-shock experiments using transient Raman scattering system with high sensitivity. The measurement system was combined with a two-stage light gas gun to interrogate the vibrational mode-dependent behaviors of shock-compressed nitromethane molecules. Up to 12 GPa, all Raman peaks were able to be clearly detected, and showed the shock-induced shifting and broadening, but no signs of chemical changes occurred in the sample. Thus, it is concluded that chemical reactions could not be initiated in singly-shocked nitromethane below 12 GPa.
  • 加载中
  • [1] M. R. Manaa, L. E. Fried, C. F. Melius, M. Elstner, and Th. Frauenheim, J. Phys. Chem. A 106, 9024 (2002).
    [2] Y. A. Gruzdkov and Y. M. Gupta, J. Phys. Chem. A 102, 8325 (1998).
    [3] R. Engelke, W. L. Earl, and C. M. Rohl ng, J. Chem. Phys. 84, 142 (1986).
    [4] C. P. Constantinou, T. Mukundan, and M. M. Chaudhri, Philos. Trans. R. Soc. Lond. A 339, 403 (1992).
    [5] Y. A. Gruzdkov and Y. M. Gupta, J. Phys. Chem. A 102, 2322 (1998).
    [6] J. M. Winey and Y. M. Gupta, J. Phys. Chem. B 101, 10733 (1997).
    [7] G. I. Pangilinan and Y. M. Gupta, J. Phys. Chem. 98, 4522 (1994).
    [8] Y. M. Gupta, G. I. Pangilinan, J. M. Winey, and C. P. Constantinou, Chem. Phys. Lett. 232, 341 (1995).
    [9] T. Kobayashi, T. Sekine, and H. He, J. Chem. Phys. 115, 10753 (2001).
    [10] A. M. Renlund and W. M. Trott, in Shock Compression of Condensed Matter-1989, New York: Elsevier, 875 (1990).
    [11] W. G. Von Holle, in Shock Waves in Condensed Matter-1981, New York: AIP Conf. Proc., 287 (1982).
    [12] D. S. Moore, S. C. Schmidt, J. W. Shaner, D. L. Shampine, and W. T. Holt, in Shock Waves in Con-densed Matter-1985, New York: Plenum, 207 (1986).
    [13] D. S. Moore, J. Phys. Chem. A 105, 4660 ((2001).
    [14] A. Delpuech and A. Menil, in Shock Waves in Condensed Matter-1983, New York: Elsevier Science, 309 (1984).
    [15] M. Citroni, R. Bini, M. Pagliai, G. Cardini, and V. Schettino, J. Phys. Chem. B 114, 9420 (2010).
    [16] L. E. Fried, M. R. Manaa, and E. J. Reed, Lecture Ser. Comput. Comput. Sci. 3, 1 (2005).
    [17] M. R. Manaa, E. J. Reed, L. E. Fried, G. Galli, and F. Gygi, J. Chem. Phys. 120, 10146 (2004).
    [18] Y. F. Chen, F. S. Liu, N. C. Zhang, B. J. Zhao, J. G. Wang, M. J. Zhang, and X. D. Xue, Chin. J. High Pressure Phys. 27, 505 (2013).
    [19] B. J. Zhao, F. S. Liu, N. C. Zhang, L. P. Feng, W. P. Wang, and M. J. Zhang, Chin. Phys. Lett. 30, 0307011 (2013).
    [20] M. D. Knudson, Y. M. Gupta, and A. B. Kunz, Phys. Rev. B 59, 11704 (1999).
    [21] M. R. Zakin and D. R. Herschbach, J. Chem. Phys. 85, 2376 (1986).
    [22] H. H. Jaffe and M. Orchin, Theory and Applications of Ultra Violet Spectroscopy, New York: John Wiley and Sons, 182 (1962).
    [23] T. G. Spiro and T. M. Loehr, In Advances in Infrared and Raman Spectroscopy, New York: Heyden, 100 (1975).
    [24] S. Courtecuisse, F. Cansell, D. Fabre, and J. P. Petitet, J. Chem. Phys. 108, 7350 (1998).
    [25] T. R. Gibbs and A. Popolato, LASL Explosive Property Data, Berkeley: University of California Press, 302 (1980).
    [26] S. Root and Y. M. Gupta, J. Phys. Chem. A 113, 1268 (2009).
    [27] C. S. Yoo and N. C. Holmes, in High-pressure Science and Technology-1993, New York: AIP, 1567 (1994).
    [28] S. N. Vinogradov and R. H. Linnell, Hydrogen Bonding, New York: Van Nostrand Reinhold Co., 53 (1971).
    [29] M. D. Joesten and L. J. Schaad, Hydrogen Bonding, New York: Marcel Dekker Inc., (1974).
    [30] B. J. Zhao, F. S. Liu, W. P. Wang, N. C. Zhang, L. P. Feng, M. J. Zhang, and X. D. Xue, Spectro. Spectral Anal. 33, 2603 ( 2013).
    [31] C. L. Mader, Numerical Modeling of Explosives and Propellants, Florida: CRC Press, 1 (1998).
    [32] J. C. Xu and J. J. Zhao, Acta Phys. Sin. 6, 4144 (2009).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(684) PDF downloads(589) Cited by()

Proportional views
Related

Raman Spectra of Liquid Nitromethane under Singly Shocked Conditions

doi: 10.1063/1674-0068/29/cjcp1503037

Abstract: Raman spectra of liquid nitromethane were measured in single-shock experiments using transient Raman scattering system with high sensitivity. The measurement system was combined with a two-stage light gas gun to interrogate the vibrational mode-dependent behaviors of shock-compressed nitromethane molecules. Up to 12 GPa, all Raman peaks were able to be clearly detected, and showed the shock-induced shifting and broadening, but no signs of chemical changes occurred in the sample. Thus, it is concluded that chemical reactions could not be initiated in singly-shocked nitromethane below 12 GPa.

Ya-ping Wang, Fu-sheng Liu, Qi-jun Liu, Ning-chao Zhan. Raman Spectra of Liquid Nitromethane under Singly Shocked Conditions[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 161-166. doi: 10.1063/1674-0068/29/cjcp1503037
Citation: Ya-ping Wang, Fu-sheng Liu, Qi-jun Liu, Ning-chao Zhan. Raman Spectra of Liquid Nitromethane under Singly Shocked Conditions[J]. Chinese Journal of Chemical Physics , 2016, 29(2): 161-166. doi: 10.1063/1674-0068/29/cjcp1503037
Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return