Hitler Louis, Ling-ju Guo, Shuang Zhu, Sajjad Hussain, Tao He. Computational Study on Interactions between CO2 and (TiO2)n Clusters at Specific Sites[J]. Chinese Journal of Chemical Physics , 2019, 32(6): 674-686. doi: 10.1063/1674-0068/cjcp1905108
Citation: Hitler Louis, Ling-ju Guo, Shuang Zhu, Sajjad Hussain, Tao He. Computational Study on Interactions between CO2 and (TiO2)n Clusters at Specific Sites[J]. Chinese Journal of Chemical Physics , 2019, 32(6): 674-686. doi: 10.1063/1674-0068/cjcp1905108

Computational Study on Interactions between CO2 and (TiO2)n Clusters at Specific Sites

doi: 10.1063/1674-0068/cjcp1905108
More Information
  • Corresponding author: Ling-ju Guo, E-mail: guolj@nanoctr.cn; Tao He, E-mail: het@nanoctr.cn
  • Received Date: 2019-05-29
  • Accepted Date: 2019-08-27
  • Publish Date: 2019-12-27
  • The energetic pathways of adsorption and activation of carbon dioxide (CO2) on low-lying compact (TiO2)n clusters are systematically investigated by using electronic structure calculations based on density-functional theory (DFT). Our calculated results show that CO2 is adsorbed preferably on the bridge O atom of the clusters, forming a "chemisorption" carbonate complex, while the CO is adsorbed preferably to the Ti atom of terminal Ti-O. The computed carbonate vibrational frequency values are in good agreement with the results obtained experimentally, which suggests that CO2 in the complex is distorted slightly from its undeviating linear configuration. In addition, the analyses of electronic parameters, electronic density, ionization potential, HOMO-LUMO gap, and density of states (DOS) confirm the charge transfer and interaction between CO2 and the cluster. From the predicted energy profiles, CO2 can be easily adsorbed and activated, while the activation of CO2 on (TiO2)n clusters are structure-dependent and energetically more favorable than that on the bulk TiO2. Overall, this study critically highlights how the small (TiO2)n clusters can influence the CO2 adsorption and activation which are the critical steps for CO2 reduction the surface of a catalyst and subsequent conversion into industrially relevant chemicals and fuels.


  • loading
  • [1]
    J. G. Canadell, C. Le Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. Houghton, and G. Marland, Proc. Natl. Acad. Sci. 104, 18866 (2007). doi: 10.1073/pnas.0702737104
    S. Chu and A. Majumdar, Nature 488, 294 (2012). doi: 10.1038/nature11475
    Y. Sohn, W. Huang, and F. Taghipour, Appl. Surf. Sci. 396, 1696 (2017). doi: 10.1016/j.apsusc.2016.11.240
    Dlugokencky, E. Tans, and P. NOAA/ESRL, blank>http://www.esrl.noaa.gov/gmd/ccgg/trends(2015).
    Y. Li, S. H. Chan, and Q. Sun, Nanoscale 7, 8663 (2015). doi: 10.1039/C5NR00092K
    D. R. Feldman, W. D. Collins, P. J. Gero, M. S. Torn, E. J. Mlawer, and T. R. Shippert, Nature 519, 339 (2015). doi: 10.1038/nature14240
    M. Dou, M. Zhang, Y. Chen, and Y. Yu, Comput. Theor. Chem. 1126, 7 (2018). doi: 10.1016/j.comptc.2018.01.008
    W. Wang, S. Wang, X. Ma, and J. Gong, Chem. Soc. Rev. 40, 3703 (2011). doi: 10.1039/c1cs15008a
    D. Çakır and O. Gülseren, J. Phys.: Condens. Matter 24, 305301 (2012).
    A. Bandura, D. Sykes, V. Shapovalov, T. Troung, J. Kubicki, and R. Evarestov, J. Phys. Chem. B 108, 7844 (2004). doi: 10.1021/jp037141i
    D. Zhang, H. Sun, J. Liu, and C. Liu, J. Phys. Chem. C 113, 21 (2008).
    Z. W. Qu and G. J. Kroes, J. Phys. Chem. B 110, 8998 (2006). doi: 10.1021/jp056607p
    Z. W. Qu and G. J. Kroes, J. Phys. Chem. C 111, 16808 (2007). doi: 10.1021/jp073988t
    M. Chen and D. A. Dixon, J. Chem. Theory Comp. 9, 3189 (2013). doi: 10.1021/ct400105c
    M. Calatayud, L. Maldonado, and C. Minot, J. Phys. Chem. C 112, 16087 (2008). doi: 10.1021/jp802851q
    S. Hamad, C. Catlow, S. Woodley, L. Lago, and J. Mejias, J. Phys. Chem. B 109, 15741 (2005). doi: 10.1021/jp0521914
    E. Berardo, F. Kaplan, K. Bhaskaran-Nair, W. A. Shelton, M. J. van Setten, K. Kowalski, and M. A. Zwijnenburg, J. Chem. Theory Comp. 13, 3814 (2017). doi: 10.1021/acs.jctc.7b00538
    S. Woodley, S. Hamad, J. Mejias, and C. Catlow, J. Mater. Chem. 16, 1927 (2006). doi: 10.1039/B600662K
    H. Y. T Chen, S. Tosoni, and G. Pacchioni, Surf. Sci. 652, 163 (2016). doi: 10.1016/j.susc.2016.02.008
    M. Chen and D. A. Dixon, Nanoscale 21, 7143 (2017).
    L. A. Flores, J. G. Murphy, W. B. Copeland, and D. A. Dixon, J. Phy. Chem. A 121, 8719 (2017).
    H. He, P. Zapol, and L. A. Curtiss, Energ. Environ. Sci. 5, 6196 (2012). doi: 10.1039/c2ee02665a
    V. P. Indrakanti, H. H. Schobert, and J. D. Kubicki, Energy Fuels 23, 5247 (2009). doi: 10.1021/ef9003957
    Y. Ji and Y. Luo, ACS Catal. 6, 2018 (2016). doi: 10.1021/acscatal.5b02694
    B. Delley, J. Chem. Phys. 113, 7756 (2000). doi: 10.1063/1.1316015
    A. D. Becke, Phys. Rev. A 38, 3098 (1988). doi: 10.1103/PhysRevA.38.3098
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). doi: 10.1103/PhysRevB.37.785
    A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009). doi: 10.1103/PhysRevLett.102.073005
    E. R. McNellis, J. Meyer, and K. Reuter, Phys. Rev. B 80, 205414 (2009). doi: 10.1103/PhysRevB.80.205414
    H. Du, A. De Sarkar, H. Li, Q. Sun, Y. Jia, and R. Q. Zhang, J. Mol. Catal. A 366, 163 (2013). doi: 10.1016/j.molcata.2012.09.019
    S. Shevlin and S. Woodley, J. Phys. Chem. C 114, 17333 (2010). doi: 10.1021/jp104372j
    S. Li and D. A. Dixon, J. Phy. Chem. A 112, 6646 (2008).
    W. Zhang, Y. Han, S. Yao, and H. Sun, Mater. Chem. Phys. 130, 196 (2011). doi: 10.1016/j.matchemphys.2011.06.027
    B. Mguig, M. Calatayud, and C. Minot, J. Mol. Struct. 709, 73 (2004). doi: 10.1016/j.theochem.2003.09.015
    B. Mguig, M. Calatayud, and C. Minot, Surf. Rev. Lett. 10, 175 (2003). doi: 10.1142/S0218625X03005281
    H. Gao and Z. Liu, RSC Adv. 7, 13082 (2017). doi: 10.1039/C6RA27137E
    H. J. Zhai and L. S. Wang, J. Am. Chem. Soc. 129, 3022 (2007). doi: 10.1021/ja068601z
    A. Abbasi and J. Jahanbin Sardroodi, Comput. Theor. Chem. 1125, 15 (2017).
    M. Calatayud, A. Markovits, M. Menetrey, B. Mguig, and C. Minot, Catal. Today 85, 125 (2003). doi: 10.1016/S0920-5861(03)00381-X
    J. Ahdjoudj, A. Markovits, and C. Minot, Catal. Today 50, 541 (1999). doi: 10.1016/S0920-5861(98)00489-1
    R. G. Pearson and R. G. Pearson, J. Chem. Sci. 117, 369 (2005). doi: 10.1007/BF02708340
    R. Jin, S. Zhang, Y. Zhang, S. Huang, P. Wang, and H. Tian, Int. J. Hydrogen Energ. 36, 9069 (2011). doi: 10.1016/j.ijhydene.2011.04.172
    S. Paranthaman, K. Hong, J. Kim, D. E. Kim, and T. K. Kim, J. Phys. Chem. A 117, 9293 (2013). doi: 10.1021/jp4074398
    H. J. Freund and M. W. Roberts, Surf. Sci. Rep. 25, 225 (1996). doi: 10.1016/S0167-5729(96)00007-6
    H. He, P. Zapol, and L. A. Curtiss, J. Phys. Chem. C 114, 21474 (2010). doi: 10.1021/jp106579b
    S. N. Habisreutinger, L. Schmidt-Mende, and J. K. Stolarczyk, Angew. Chem. Int. Ed. 52, 7372 (2013). doi: 10.1002/anie.201207199
    D. C. Sorescu, J. Lee, W. A. Al-Saidi, and K. D. Jordan, J. Chem. Phys. 134, 104707 (2011). doi: 10.1063/1.3561300
    D. Lu, Y. Li, D. Rocca, and G. Galli, Phys. Rev. Lett. 102, 206411 (2009). doi: 10.1103/PhysRevLett.102.206411
    M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401. (2004).
    J. Tao, J. P. Perdew, and A. Ruzsinszky, Phys. Rev. B 81, 233102 (2010). doi: 10.1103/PhysRevB.81.233102
    J. Klimeš and D. R. Bowler, Phys. Rev. B 83, 195131 (2011). doi: 10.1103/PhysRevB.83.195131
    A. N. Andriotis, G. Mpourmpakis, S. Broderick, K. Rajan, S. Datta, M. Sunkara, and M. Menon, J. Chem. Phys. 140, 094705 (2014). doi: 10.1063/1.4867010
    N. Austin, J. Ye, and G. Mpourmpakis, Catal. Sci. Technol. 7, 2245 (2017). doi: 10.1039/C6CY02628A
    J. A. Rodriguez, Langmuir 4, 1006 (1988). doi: 10.1021/la00082a036
    J. Phillips, Phys. Rev. 123, 420 (1961). doi: 10.1103/PhysRev.123.420
    D. W. Smith and O. W. Day, J. Chem. Phys. 62, 113 (1975). doi: 10.1063/1.430253
    H. Wu, J. M. Simmons, G. Srinivas, W. Zhou, and T. J. Yildirim, J. Phys. Chem. Lett. 1, 1946 (2010). doi: 10.1021/jz100558r
    Y. Q. Zhao, L. Liu, C. E. Hu, and Y. Cheng, Comput. Theor. Chem. 1141, 1 (2018). doi: 10.1016/j.comptc.2018.08.012
    C. T. Yang, B. C. Wood, V. R. Bhethanabotla, and B. Joseph, J. Phys. Chem. C 118, 26236 (2014). doi: 10.1021/jp509219n
    S. B. Mishra, A. Choudhary, S. C. Roy, and B. R. K. Nanda, Phys. Rev. Mater. 11, 115801 (2018).
    S. F. Li and Z. X. Guo, J. Phys. Chem. C 114, 11456 (2010). doi: 10.1021/jp100147g
    L. Mino, G. Spoto, and A. M. Ferrari, J. Phys. Chem. C 118, 25016 (2014). doi: 10.1021/jp507443k
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(16)

    Article Metrics

    Article views (1887) PDF downloads(69) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint