Kang Wei, Lei Zhang, Shen-long Jiang, Qun Zhang. Energy Transfer and Electron Transfer in Composite System of Carbon Quantum Dots/Rhodamine B Molecules[J]. Chinese Journal of Chemical Physics , 2019, 32(6): 643-648. doi: 10.1063/1674-0068/cjcp1905105
Citation: Kang Wei, Lei Zhang, Shen-long Jiang, Qun Zhang. Energy Transfer and Electron Transfer in Composite System of Carbon Quantum Dots/Rhodamine B Molecules[J]. Chinese Journal of Chemical Physics , 2019, 32(6): 643-648. doi: 10.1063/1674-0068/cjcp1905105

Energy Transfer and Electron Transfer in Composite System of Carbon Quantum Dots/Rhodamine B Molecules

doi: 10.1063/1674-0068/cjcp1905105
More Information
  • Corresponding author: Qun Zhang, E-mail: qunzh@ustc.edu.cn
  • Received Date: 2019-05-27
  • Accepted Date: 2019-06-14
  • Publish Date: 2019-12-27
  • In this work, we investigated the energy transfer (EnT) and electron transfer (ET) processes as well as their relationship in the carbon quantum dots/rhodamine B (CQDs/RhB) including o-CQDs/RhB and m-CQDs/RhB systems by using photoluminescence spectroscopy in combination with steady-state and transient absorption spectroscopy. We found that the ET process is negligible in the o-CQDs/RhB system with an EnT efficiency as high as 73.2%, while it becomes pronounced in the m-CQDs/RhB system whose EnT efficiency is lower than 33.5%. Such an interplay of EnT and ET processes revealed in the prototypical composite system consisting of carbon quantum dots and dye molecules would provide helpful insights for applications of relevance to exciton quenching.

     

  • loading
  • [1]
    C. H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, Nat. Mater. 13, 796 (2014). doi: 10.1038/nmat3984
    [2]
    X. W. Gong, Z. Y. Yang, G. Walters, R. Comin, Z. J. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, Nat. Photon. 10, 253 (2016). doi: 10.1038/nphoton.2016.11
    [3]
    M. Y. Ye, Z. H. Zhao, Z. F. Hu, L. Q. Liu, H. M. Ji, Z. R. Shen, and T. Y. Ma, Angew. Chem. Int. Ed. 56, 8407 (2017). doi: 10.1002/anie.201611127
    [4]
    E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon, and H. S. Kim, J. Am. Chem. Soc. 127, 3270 (2005). doi: 10.1021/ja0433323
    [5]
    A. P. Litvin, E. V. Ushakova, P. S. Parfenov, A. V. Fedorov, and A. V. Baranov, J. Phys. Chem. C 118, 6531 (2014).
    [6]
    X. G. Li, W. T. Bi, L. Zhang, S. Tao, W. S. Chu, Q. Zhang, Y. Luo, C. Z. Wu, and Y. Xie, Adv. Mater. 28, 2427 (2016). doi: 10.1002/adma.201505281
    [7]
    L. Chen, L. Zhang, S. L. Jiang, and Q. Zhang, Chin. J. Chem. Phys. 31, 165 (2018). doi: 10.1063/1674-0068/31/cjcp1710196
    [8]
    R. Roy, S. Hohng, and T. Ha, Nat. Methods 5, 507 (2008). doi: 10.1038/nmeth.1208
    [9]
    A. M. Funston, J. J. Jasieniak, and P. Mulvaney, Adv. Mater. 20, 4274 (2008). doi: 10.1002/adma.200703186
    [10]
    S. Sadhu, K. K. Haldar, and A. Patra, J. Phys. Chem. C 114, 3891 (2010). doi: 10.1021/jp911801m
    [11]
    S. Saha, D. Majhi, K. Bhattacharyya, N. Preeyanka, A. Datta, and M. Sarkar, Phys. Chem. Chem. Phys. 20, 9523 (2018). doi: 10.1039/C7CP07233C
    [12]
    A. Issac, S. Y. Jin, and T. Q. Lian, J. Am. Chem. Soc. 130, 11280 (2008). doi: 10.1021/ja8043085
    [13]
    S. Jagadeeswari, M. A. Jhonsi, A. Kathiravan, and R. Renganathan, J. Lumin. 131, 597 (2011). doi: 10.1016/j.jlumin.2010.10.037
    [14]
    Y. Yang, W. Rodríguez-Córdoba, and T. Q. Lian, Nano Lett. 12, 4235 (2012). doi: 10.1021/nl301847r
    [15]
    K. Jiang, S. Sun, L. Zhang, Y. Lu, A. G. Wu, C. Z. Cai, and H. W. Lin, Angew. Chem. Int. Ed. 54, 5360 (2015). doi: 10.1002/anie.201501193
    [16]
    S. L. Hu, Q. Zhao, Q. Chang, J. L. Yang, and J. Liu, RSC Adv. 4, 41069 (2014). doi: 10.1039/C4RA06371F
    [17]
    P. D. Zhou, H. Liu, S. C. Chen, L. Lucia, H. Y. Zhan, and S. Y. Fu, Molbank 3, M730 (2011).
    [18]
    Y. X. Fang, S. J. Guo, D. Li, C. Z. Zhu, W. Ren, S. J. Dong, and E. K. Wang, ACS Nano 6, 400 (2012). doi: 10.1021/nn2046373
    [19]
    P. Wu, W. Li, Q. Wu, Y. S. Liu, and S. X. Liu, RSC Adv. 7, 44144 (2017). doi: 10.1039/C7RA08400E
    [20]
    S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, Phys. Rev. Lett. 89, 186802 (2002). doi: 10.1103/PhysRevLett.89.186802
    [21]
    K. E. Sapsford, L. Berti, and I. L. Medintz, Angew. Chem. Int. Ed. 45, 4562 (2006). doi: 10.1002/anie.200503873
    [22]
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd Edn., New York: Kluwer Academics (1999).
    [23]
    V. R. Desai, S. M. Hunagund, M. S. Pujar, M. Basanagouda, J. S. Kadadevarmath, and A. H. Sidarai, J. Mol. Liq. 233, 166 (2017). doi: 10.1016/j.molliq.2017.03.018
    [24]
    Q. Li, X. Li, S. Wageh, A. A. Al-Ghamdi, and J. G. Yu, Adv. Energy Mater. 5, 1500010 (2015). doi: 10.1002/aenm.201500010
    [25]
    Q. Zhang and Y. Luo, High Power Laser Sci. Eng. 4, e22 (2016). doi: 10.1017/hpl.2016.23
    [26]
    Q. C. Shang, X. Z. Fang, H. L. Jiang, and Q. Zhang, Chin. J. Chem. Phys. 31, 613 (2018). doi: 10.1063/1674-0068/31/cjcp1803044
    [27]
    K. F. Wu, H. M. Zhu, Z. Liu, W. Rodríguez-Córdoba, and T. Q. Lian, J. Am. Chem. Soc. 134, 10337 (2012). doi: 10.1021/ja303306u
    [28]
    D. A. Wheeler and J. Z. Zhang, Adv. Mater. 25, 2878 (2013). doi: 10.1002/adma.201300362
    [29]
    A. Boulesbaa, Z. Q. Huang, D. Wu, and T. Q. Lian, J. Phys. Chem. C 114, 962 (2010). doi: 10.1021/jp909972b
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (1980) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return