Wen-yan Zhang, Fei-wu Chen. Iterative Multireference Configuration Interaction[J]. Chinese Journal of Chemical Physics , 2019, 32(6): 701-707. doi: 10.1063/1674-0068/cjcp1905094
Citation: Wen-yan Zhang, Fei-wu Chen. Iterative Multireference Configuration Interaction[J]. Chinese Journal of Chemical Physics , 2019, 32(6): 701-707. doi: 10.1063/1674-0068/cjcp1905094

Iterative Multireference Configuration Interaction

doi: 10.1063/1674-0068/cjcp1905094
More Information
  • Corresponding author: Fei-wu Chen, E-mail: chenfeiwu@ustb.edu.cn
  • Received Date: 2019-05-15
  • Accepted Date: 2019-07-22
  • Publish Date: 2019-12-27
  • Iterative multireference configuration interaction (IMRCI) is proposed. It is exploited to compute the electronic energies of H$_2$O and CH$_2$ (singlet and triplet states) at equilibrium and non-equilibrium geometries. The potential energy curves of H$_2$O, CH$_2$ (singlet and triplet states) and N$_2$ have also been calculated with IMRCI as well as the Møller Plesset perturbation theory (MP2, MP3, and MP4), the coupled cluster method with single and double substitutions (CCSD), and CCSD with perturbative triples correction (CCSD(T)). These calculations demonstrate that IMRCI results are independent of the initial guess of configuration functions in the reference space and converge quickly to the results of the full configuration interaction. The IMRCI errors relative to the full configuration interaction results are at the order of magnitude of 10$^{-5}$ hartree within just 2-4 iterations. Further, IMRCI provides an efficient way to find on the potential energy surface the leading electron configurations which, as correct reference states, will be very helpful for the single-reference and multireference theoretical models to obtain accurate results.

     

  • loading
  • [1]
    C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934). doi: 10.1103/PhysRev.46.618
    [2]
    C. W. Murray and E. R. Davidson, Chem. Phys. Lett. 187, 451 (1991). doi: 10.1016/0009-2614(91)80281-2
    [3]
    R. D. Amos, J. S. Andrews, N. C. Handy, and P. J. Knowles, Chem. Phys. Lett. 185, 256 (1991). doi: 10.1016/S0009-2614(91)85057-4
    [4]
    P. J. Knowles, J. S. Andrews, R. D. Amos, N. C. Handy, and J. A. Pople, Chem. Phys. Lett. 186, 130 (1991). doi: 10.1016/S0009-2614(91)85118-G
    [5]
    W. J. Lauderdale, J. F. Stanton, J. Gauss, J. D. Watts, and R. J. Bartlett, Chem. Phys. Lett. 187, 21 (1991). doi: 10.1016/0009-2614(91)90478-R
    [6]
    D. Jayatilaka and T. J. Lee, Chem. Phys. Lett. 199, 211 (1992). doi: 10.1016/0009-2614(92)80108-N
    [7]
    T. J. Lee and D. Jayatilaka, Chem. Phys. Lett. 201, 1 (1993). doi: 10.1016/0009-2614(93)85024-I
    [8]
    P. M. Kozlowski and E. R. Davidson, Chem. Phys. Lett. 226, 440 (1994). doi: 10.1016/0009-2614(94)00763-2
    [9]
    F. Chen, J. Chem. Theory. Comput. 5, 931 (2009). doi: 10.1021/ct800546g
    [10]
    F. Chen, M. Wei, and W. Liu, China Chem. Sci. 54, 446 (2011). doi: 10.1007/s11426-010-4199-1
    [11]
    S. R. Yost and M. Head-Gordon, J. Chem. Phys. 145, 054105 (2016). doi: 10.1063/1.4959794
    [12]
    J. ${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over C} }}$í${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over z} }}$ek, J. Chem. Phys. 45, 4256 (1966). doi: 10.1063/1.1727484
    [13]
    G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982). doi: 10.1063/1.443164
    [14]
    K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989). doi: 10.1016/S0009-2614(89)87395-6
    [15]
    D. I. Lyakh, M. Musiaz, V. F. Lotrich, and R. J. Bartlett, Chem. Rev. 112, 182 (2012). doi: 10.1021/cr2001417
    [16]
    T. Helgaker, S. Coriani, P. Jørgensen, K. Kristensen, J. Olsen, and K. Ruud, Chem. Rev. 112, 543 (2012). doi: 10.1021/cr2002239
    [17]
    J. Cao, M. Wei, and F. Chen, Acta Phys. Chim. Sin. 32, 1639 (2016).
    [18]
    Y. C. Chou, Comput. Theor. Chem. 1111, 50 (2017). doi: 10.1016/j.comptc.2017.04.003
    [19]
    I. Shavitt, The Method of Configuration Interaction, H. F. Schaefer Eds., Methods of Electronic Structure Theory, Modern Theoretical Chemistry, Boston: Springer, Vol. 3, 189-275 (1997).
    [20]
    B. Brooks and H. F. Schaefer, J. Chem. Phys. 70, 5092 (1970).
    [21]
    H. J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988). doi: 10.1063/1.455556
    [22]
    D. Feller, J. Chem. Phys. 98, 7059 (1993). doi: 10.1063/1.464749
    [23]
    C. D. Sherrill and H. F. Schaefer, Adv. Quantum. Chem. 34, 143 (1999). doi: 10.1016/S0065-3276(08)60532-8
    [24]
    P. G. Szalay, T. Müller, G. Gidofalvi, H. Lischka, and R. Shepard, Chem. Rev. 112, 108 (2012). doi: 10.1021/cr200137a
    [25]
    X. Chen, Z. Chen, and W. Wu, J. Chem. Phys. 141, 194113 (2014). doi: 10.1063/1.4901729
    [26]
    W. Liu and M. R. Hoffmann, Theor. Chem. Acc. 133, 1481 (2014). doi: 10.1007/s00214-014-1481-x
    [27]
    W. Liu and M. R. Hoffmann, J. Chem. Theory. Comput. 12, 1169 (2016). doi: 10.1021/acs.jctc.5b01099
    [28]
    J. Cao and F. Chen, Acta Phys. Chim. Sin. 33, 1130 (2017).
    [29]
    J. B. Schriber and F. A. Evangelista, J. Chem. Phys. 144, 161106 (2016). doi: 10.1063/1.4948308
    [30]
    J. B. Schriber and F. A. Evangelista, J. Chem. Theory. Comput. 13, 5354 (2017). doi: 10.1021/acs.jctc.7b00725
    [31]
    A. A. Holmes, N. M. Tubman, and C. J. Umrigar, J. Chem. Theory Comput. 12, 3674 (2016). doi: 10.1021/acs.jctc.6b00407
    [32]
    S. Sharma, A. A. Holmes, G. Jeanmairet, A. Alavi, and C. J. Umrigar, J. Chem. Theory. Comput. 13, 1595 (2017). doi: 10.1021/acs.jctc.6b01028
    [33]
    A. D. Chien, A. A. Holmes, M. Otten, C. J. Umrigar, S. Sharma, and P. M. Zimmerman, J. Phys. Chem. A 122, 2714 (2018). doi: 10.1021/acs.jpca.8b01554
    [34]
    H. Lischka, D. Nachtigallová, A. J. A. Aquino, P. G. Szalay, F. Plasser, F. B. C. Machado, and M. Barbatti, Chem. Rev. 118, 7293 (2018). doi: 10.1021/acs.chemrev.8b00244
    [35]
    Z. Rolik, A. Szabados, and P. R. Surján, J. Chem. Phys. 128, 144101 (2008). doi: 10.1063/1.2839304
    [36]
    W. A. Vigor, J. S. Spencer, M. J. Bearpark, and A. J. W. Thom, J. Chem. Phys. 144, 094110 (2016). doi: 10.1063/1.4943113
    [37]
    H. Nakatsuji and M. Ehara, J. Chem. Phys. 122, 194108 (2005). doi: 10.1063/1.1898207
    [38]
    H. Nakatsuji, J. Chem. Phys. 113, 2949 (2000). doi: 10.1063/1.1287275
    [39]
    H. Nakatsuji and M. Ehara, J. Chem. Phys. 117, 9 (2002). doi: 10.1063/1.1487830
    [40]
    J. Ivanic and K. Ruedenberg, Theor. Chem. Acc. 106, 339 (2001). doi: 10.1007/s002140100285
    [41]
    S. Evangelisti, J. P. Daudey, and J. P. Malrieu, Chem. Phys. 75, 91 (1983). doi: 10.1016/0301-0104(83)85011-3
    [42]
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Natsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993). doi: 10.1002/jcc.540141112
    [43]
    L. E. McMurchie, S. T. Elbert, S. R. Langhoff, and E. R. Davidson, MELD, Modifications by D. Feller and D. C. Rawlings, http://php.indiana.edu/~davidson/meld.htm.
    [44]
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V.Barone, B. Mennucci, G. A.Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E.Peralta, F.Ogliaro, M.Bearpark, J. J. Heyd, E. Brothers, K. N.Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. Cross, V. Bakken, C.Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01, Wallingford CT: Gaussian Inc., (2009).
    [45]
    A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, New York: Macmillan, (1982).
    [46]
    W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972). doi: 10.1063/1.1677527
    [47]
    T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989). doi: 10.1063/1.456153
    [48]
    C. W. Bauschlisher and R. P. Taylor, J. Chem. Phys. 85, 6510 (1986). doi: 10.1063/1.451431
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (1749) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return