Li-zhi Fang, Xiong Zhou, Hai-ping Xia, Jian-xu Hu, Jian-li Zhang, Bao-jiu Chen. Optical Spectroscopy of Pr3+ Ion Singly Doped LiLuF4 Single Crystal by Bridgman Method[J]. Chinese Journal of Chemical Physics , 2019, 32(6): 661-666. doi: 10.1063/1674-0068/cjcp1902025
Citation: Li-zhi Fang, Xiong Zhou, Hai-ping Xia, Jian-xu Hu, Jian-li Zhang, Bao-jiu Chen. Optical Spectroscopy of Pr3+ Ion Singly Doped LiLuF4 Single Crystal by Bridgman Method[J]. Chinese Journal of Chemical Physics , 2019, 32(6): 661-666. doi: 10.1063/1674-0068/cjcp1902025

Optical Spectroscopy of Pr3+ Ion Singly Doped LiLuF4 Single Crystal by Bridgman Method

doi: 10.1063/1674-0068/cjcp1902025
More Information
  • Corresponding author: Hai-ping Xia, E-mail: hpxcm@nbu.edu.cn
  • Received Date: 2019-02-03
  • Accepted Date: 2019-04-15
  • Publish Date: 2019-12-27
  • High quality LiLuF4 single crystals doped with various Pr3+ ions were synthesized by a vertical Bridgman method in completely sealed platinum crucibles. The excitation spectra spans from 420 nm to 500 nm. The prepared single crystals exhibit a blue band at 480 nm (3P03H4), a green band at 522 nm (3P13H5), and a red band at 605 nm (1D23H4) when excited at 446 nm; their corresponding average lifetimes are 38.5 μs, 37.3 μs, and 36.8 μs, respectively, which are much longer than those in oxide single crystals. The effects of excitation wavelength and doping concentration on emission intensities and chromaticity coordinates are investigated. The optimal Pr3+ concentration is confirmed to be 0.5%. The temperature dependent emission shows that the emission intensity constantly decreases with the increase of temperature from 298 K to 443 K due to the enhancement of non-radiative quenching at high temperature. The 3P03H4 transition is the most vulnerable to temperature, followed by the 3P13H5 transition and 1D23H4 transition.

     

  • loading
  • [1]
    D. R. Simons, A. J. Faber, and H. D. Waal, Opt. Lett. 20, 468 (1995). doi: 10.1364/OL.20.000468
    [2]
    E. V. D. Kolk, P. Dorenbos, and C. W. E. V. Eijk, Opt. Commun. 197, 317 (2001). doi: 10.1016/S0030-4018(01)01452-3
    [3]
    S. Okamoto, H. Kobayashi, and H. Yamamoto, J. Appl. Phys. 86, 5594 (1999). doi: 10.1063/1.371565
    [4]
    E. Osiac, E. Heumann, G. Huber, S. Kück, E. Sani, A. Toncelli, and M. Tonelli, Appl. Phys. Lett. 82, 3832 (2003). doi: 10.1063/1.1579561
    [5]
    X. Bin, C. Patrice, D. Jean-Louis, C. Zhiping, and M. Richard, Opt. Express 19, 1191 (2011). doi: 10.1364/OE.19.001191
    [6]
    K. Kamada, M. Nikl, S. Kurosawa, A. Beitlerova, A. Nagura, Y. Shoji, J. Pejchal, Y. Ohashi, Y. Yokota, and A. Yoshikawa, Opt. Mater. 41, 63 (2015). doi: 10.1016/j.optmat.2014.10.008
    [7]
    X. Min, M. Fang, Z. Huang, Y. G. Liu, C. Tang, H. Zhu, and X. Wu, Opt. Mater. 37, 110 (2014). doi: 10.1016/j.optmat.2014.05.008
    [8]
    K. Ouannes, M. T. Soltani, M. Poulain, G. Boulon, G. Alombert-Goget, Y. Guyot, A. Pillonnet, and K. Lebbou, J. Alloys Compd. 603, 132 (2014). doi: 10.1016/j.jallcom.2014.02.008
    [9]
    G. Lakshminarayana, H. Yang, and J. Qiu, J. Solid State Chem. 182, 669 (2009). doi: 10.1016/j.jssc.2008.11.020
    [10]
    T. Lei, H. Xia, P. Wang, J. Peng, Y. Zhang, H. Jiang, and H. Chen, Mater. Lett. 104, 37 (2013). doi: 10.1016/j.matlet.2013.03.141
    [11]
    T. Lei, H. P. Xia, J. T. Peng, Y. P. Zhang, and H. C. Jiang, J. Mater. Sci. 48, 7518 (2013). doi: 10.1007/s10853-013-7566-4
    [12]
    Y. M. Yang, Z. Y. Li, J. Y. Zhang, Y. Lu, S. Q. Guo, Q. Zhao, X. Wang, Z. J. Yong, H. Li, J. P. Ma, Y. Kuroiwa, C. Moriyoshi, L. L. Hu, L. Y. Zhang, L. R. Zheng, and H. T. Sun, Light Sci. Appl. 7, 88 (2018). doi: 10.1038/s41377-018-0089-7
    [13]
    E. L. Cates, M. Cho, and J. H. Kim, Environ. Sci. Tech nol. 45, 3680 (2011). doi: 10.1021/es200196c
    [14]
    C. Liu, F. Pan, Q. Peng, W. Zhou, R. Shi, L. Zhou, J. Zhang, J. Chen, and H. Liang, J. Phys. Chem. C 120 (2016).
    [15]
    A. J. S. Mcgonigle, S. Girard, D. W. Coutts, and R. Moncorge, Eletron. Lett. 35, 19 (1999). doi: 10.1049/el:19990029
    [16]
    F. Auzel and F. Pellé, Opt. Mater. 8, 15 (1997). doi: 10.1016/S0925-3467(97)00031-1
    [17]
    S. He, H. Xia, Q. Tang, Q. Sheng, J. Zhang, Y. Zhu, and B. Chen, Cryst. Res. Technol. 17, 1700136 (2018).
    [18]
    S. Nicolas, Opt. Mater. 16, 233 (1999).
    [19]
    H. Sun, D. Peng, X. Wang, M. Tang, Q. Zhang, and Y. Xi, J. Appl. Phys. 110, 2087 (2011).
    [20]
    S. W. Allison, M. R. Cates, and G. T. Gillies, Rev. Sci. Instrum. 73, 1832 (2002). doi: 10.1063/1.1460928
    [21]
    P. Boutinaud, R. Mahiou, E. Cavalli, and M. Bettinelli, J. Lumin. 122, 430 (2007).
    [22]
    G. Mahlik, A. A. Kaminskii, and B. Bettinelli, J. Lu min. 129, 1219 (2009).
    [23]
    Y. Inaguma, M. Okamoto, T. Tsuchiya, and T. Kat sumata, Solid State Ionics Diffusion React. 179, 788 (2008). doi: 10.1016/j.ssi.2007.12.012
    [24]
    C. S. Mccamy, Color Res. Appl. 17, 142 (2010).
    [25]
    Y. Jin, Y. Hu, C. Li, X. Wang, G. Ju, and Z. Mou, J. Am. Chem. Soc. 96, 3821 (2013).
    [26]
    H. Yanlin, T. Taiju, and S. Hyo Jin, J. Phys. Chem. A 112, 5839 (2008). doi: 10.1021/jp712030q
    [27]
    D. Kasprowicz, M. G. Brik, K. Jaroszewski, T. Pedzin ski, B. Bursa, P. G luchowski, A. Majchrowski, and E. Michalski, Opt. Mater. 47, 428 (2015). doi: 10.1016/j.optmat.2015.06.016
    [28]
    S. Sternberg, Q. J. Exp. Psychol. 27, 193101 (1975).
    [29]
    [30]
    P. Glaister, Trends Cell Biol. 21, 133 (1991). https://www.sciencedirect.com/science/article/pii/089812219190246Z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (1927) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return