Yang Liu, Rui-xue Xu, Hou-dao Zhang, YiJing Yan. Dissipaton Equation of Motion Theory versus Fokker-Planck Quantum Master Equation[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 245-256. doi: 10.1063/1674-0068/31/cjcp1804083
Citation: Yang Liu, Rui-xue Xu, Hou-dao Zhang, YiJing Yan. Dissipaton Equation of Motion Theory versus Fokker-Planck Quantum Master Equation[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 245-256. doi: 10.1063/1674-0068/31/cjcp1804083

Dissipaton Equation of Motion Theory versus Fokker-Planck Quantum Master Equation

doi: 10.1063/1674-0068/31/cjcp1804083
Funds:  This work was supported from the Ministry of Science and Technology (No.2016YFA0400900), the National Natural Science Foundation of China (No.21373191, No.21633006, and No.21303090), and the Fundamental Research Funds for the Central Universities (No.2030020028).
  • Received Date: 2018-04-27
  • Rev Recd Date: 2018-05-28
  • The quest of exact and nonperturbative methods on quantum dissipation with nonlinear coupling environments remains in general a great challenge. In this review we present a comprehensive account on two approaches to the entangled system-and-environment dynamics, in the presence of linear-plus-quadratic coupling bath. One is the dissipaton-equation-ofmotion (DEOM) theory that has been extended recently to treat the nonlinear coupling environment. Another is the extended Fokker-Planck quantum master equation (FP-QME) approach that will be constructed in this work, based on its DEOM correspondence. We closely compare these two approaches, with the focus on the underlying quasi-particle picture, physical implications, and implementations.
  • 加载中
  • [1] R. P. Feynman and F. L. Vernon Jr., Ann. Phys. 24, 118(1963).
    [2] J. S. Jin, X. Zheng, and Y. J. Yan, J. Chem. Phys. 128, 234703(2008).
    [3] Y. Tanimura, Phys. Rev. A 41, 6676(1990).
    [4] Y. Tanimura, J. Phys. Soc. Jpn. 75, 082001(2006).
    [5] R. X. Xu, P. Cui, X. Q. Li, Y. Mo, and Y. J. Yan, J. Chem. Phys. 122, 041103(2005).
    [6] J. J. Ding, R. X. Xu, and Y. J. Yan, J. Chem. Phys. 136, 224103(2012).
    [7] Y. A. Yan, F. Yang, Y. Liu, and J. S. Shao, Chem. Phys. Lett. 395, 216(2004).
    [8] R. X. Xu and Y. J. Yan, Phys. Rev. E 75, 031107(2007).
    [9] J. S. Shao, J. Chem. Phys. 120, 5053(2004).
    [10] J. M. Moix and J. S. Cao, J. Chem. Phys. 139, 134106(2013).
    [11] Y. L. Ke and Y. Zhao, J. Chem. Phys. 145, 024101(2016).
    [12] Y. L. Ke and Y. Zhao, J. Chem. Phys. 146, 174105(2017).
    [13] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics Ⅱ:Nonequilibrium Statistical Mechanics, Berlin Heidelberg:Springer-Verlag, (1991).
    [14] Y. J. Yan and R. X. Xu, Annu. Rev. Phys. Chem. 56, 187(2005).
    [15] U. Weiss, Quantum Dissipative Systems, 4th Edn. Singapore:World Scientific, (2012)
    [16] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th Edn., Singapore:World Scientific, (2009).
    [17] Y. J. Yan, J. Chem. Phys. 140, 054105(2014).
    [18] Y. J. Yan, J. S. Jin, R. X. Xu, and X. Zheng, Frontiers Phys. 11, 110306(2016).
    [19] H. D. Zhang, R. X. Xu, X. Zheng, and Y. J. Yan, Mol. Phys. 116, 780(2018).
    [20] R. X. Xu, Y. Liu, H. D. Zhang, and Y. J. Yan, Chin. J. Chem. Phys. 30, 395(2017).
    [21] R. X. Xu, Y. Liu, H. D. Zhang, and Y. J. Yan, J. Chem. Phys. 148, 114103(2018).
    [22] A. A. Golosov, R. A. Friesner, and P. Pechukas, J. Chem. Phys. 112, 2095(2000).
    [23] M. Thoss, H. B. Wang, and W. H. Miller, J. Chem. Phys. 115, 2991(2001).
    [24] A. Garg, J. N. Onuchic, and V. Ambegaokar, J. Chem. Phys. 83, 4491(1985).
    [25] L. D. Zusman, Chem. Phys. 49, 295(1980).
    [26] L. D. Zusman, Chem. Phys. 80, 29(1983).
    [27] A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374(1983),[Erratum:153, 445(1984)].
    [28] A. O. Caldeira and A. J. Leggett, Physica A 121, 587(1983).
    [29] J. J. Ding, H. D. Zhang, Y. Wang, R. X. Xu, X. Zheng, and Y. J. Yan, J. Chem. Phys. 145, 204110(2016).
    [30] J. J. Ding, Y. Wang, H. D. Zhang, R. X. Xu, X. Zheng, and Y. J. Yan, J. Chem. Phys. 146, 024104(2017).
    [31] H. Liu, L. L. Zhu, S. M. Bai, and Q. Shi, J. Chem. Phys. 140, 134106(2014).
    [32] J. Hu, R. X. Xu, and Y. J. Yan, J. Chem. Phys. 133, 101106(2010).
    [33] J. Hu, M. Luo, F. Jiang, R. X. Xu, and Y. J. Yan, J. Chem. Phys. 134, 244106(2011).
    [34] J. S. Jin, S. K. Wang, X. Zheng, and Y. J. Yan, J. Chem. Phys. 142, 234108(2015).
    [35] H. D. Zhang, R. X. Xu, X. Zheng, and Y. J. Yan, J. Chem. Phys. 142, 024112(2015).
    [36] H. D. Zhang, Q. Qiao, R. X. Xu, and Y. J. Yan, Chem. Phys. 481, 237(2016).
    [37] H. D. Zhang, Q. Qiao, R. X. Xu, and Y. J. Yan, J. Chem. Phys. 145, 204109(2016).
    [38] H. Risken, The Fokker-Planck Equation, Methods of Solution and Applications, 2nd Edn., Berlin:SpringerVerlag, (1989).
    [39] S. Mukamel, The Principles of Nonlinear Optical Spectroscopy, New York:Oxford University Press, (1995).
    [40] Y. J. Yan and S. Mukamel, J. Chem. Phys. 85, 5908(1986).
    [41] B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45, 2843(1992).
    [42] R. X. Xu, B. L. Tian, J. Xu, and Y. J. Yan, J. Chem. Phys. 130, 074107(2009).
    [43] R. X. Xu, Y. Mo, P. Cui, S. H. Lin, and Y. J. Yan, in Progress in Theoretical Chemistry and Physics, Vol. 12:Advanced Topics in Theoretical Chemical Physics, J. Maruani, R. Lefebvre, and E. Brändas, Eds. Dordrecht:Kluwer, 7-40(2003).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1339) PDF downloads(592) Cited by()

Proportional views
Related

Dissipaton Equation of Motion Theory versus Fokker-Planck Quantum Master Equation

doi: 10.1063/1674-0068/31/cjcp1804083
Funds:  This work was supported from the Ministry of Science and Technology (No.2016YFA0400900), the National Natural Science Foundation of China (No.21373191, No.21633006, and No.21303090), and the Fundamental Research Funds for the Central Universities (No.2030020028).

Abstract: The quest of exact and nonperturbative methods on quantum dissipation with nonlinear coupling environments remains in general a great challenge. In this review we present a comprehensive account on two approaches to the entangled system-and-environment dynamics, in the presence of linear-plus-quadratic coupling bath. One is the dissipaton-equation-ofmotion (DEOM) theory that has been extended recently to treat the nonlinear coupling environment. Another is the extended Fokker-Planck quantum master equation (FP-QME) approach that will be constructed in this work, based on its DEOM correspondence. We closely compare these two approaches, with the focus on the underlying quasi-particle picture, physical implications, and implementations.

Yang Liu, Rui-xue Xu, Hou-dao Zhang, YiJing Yan. Dissipaton Equation of Motion Theory versus Fokker-Planck Quantum Master Equation[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 245-256. doi: 10.1063/1674-0068/31/cjcp1804083
Citation: Yang Liu, Rui-xue Xu, Hou-dao Zhang, YiJing Yan. Dissipaton Equation of Motion Theory versus Fokker-Planck Quantum Master Equation[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 245-256. doi: 10.1063/1674-0068/31/cjcp1804083
Reference (43)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return