Tian-lei Guang, Ya-ting Gao, Xiao-dong Ye. Effect of a Single Repeat Sequence of the Human Telomere d(TTAGGG) on Structure of Single-Stranded Telomeric DNA d[AGGG(TTAGGG)$_6$][J]. Chinese Journal of Chemical Physics , 2018, 31(5): 635-640. doi: 10.1063/1674-0068/31/cjcp1804069
Citation: Tian-lei Guang, Ya-ting Gao, Xiao-dong Ye. Effect of a Single Repeat Sequence of the Human Telomere d(TTAGGG) on Structure of Single-Stranded Telomeric DNA d[AGGG(TTAGGG)$_6$][J]. Chinese Journal of Chemical Physics , 2018, 31(5): 635-640. doi: 10.1063/1674-0068/31/cjcp1804069

Effect of a Single Repeat Sequence of the Human Telomere d(TTAGGG) on Structure of Single-Stranded Telomeric DNA d[AGGG(TTAGGG)$_6$]

doi: 10.1063/1674-0068/31/cjcp1804069
More Information
  • Corresponding author: Xiao-dong Ye, E-mail: xdye@ustc.edu.cn, Tel.: 86-551-63606742
  • Received Date: 2018-04-18
  • Accepted Date: 2018-05-12
  • Publish Date: 2018-10-27
  • The structures of human telomeric DNA have received much attention due to its significant biological importance. Most studies have focused on G-quadruplex structure formed by short telomeric DNA sequence, but little is known about the structures of long single-stranded telomeric DNAs. Here, we investigated the structure of DNA with a long sequence of d[AGGG(TTAGGG)$_6$] (G$_6$-DNA) and the effect of a single repeat sequence d(TTAGGG) (G$_{01}$-DNA) on the structure of G$_6$-DNA using sedimentation velocity technique, polyacrylamide gel electrophoresis, circular dichroism spectroscopy, and UV melting experiments. The results suggest that the G$_6$-DNA can form dimers in aqueous solutions and G$_{01}$-DNA can form additional G-quadruplex structures by binding to G$_6$-DNA. However, G$_{01}$-DNA has no effect on the structure of DNA with a sequence of d[AGGG(TTAGGG)$_3$] (G$_3$-DNA). Our study provides new insights into the structure polymorphism of long human single-stranded telomeric DNA.

     

  • loading
  • [1]
    J. A. Hackett, D. M. Feldser, and C. W. Greider, Cell 106, 275 (2001). doi: 10.1016/S0092-8674(01)00457-3
    [2]
    R. K. Moyzis, J. M. Buckingham, L. S. Cram, M. Dani, L. L. Deaven, M. D. Jones, J. Meyne, R. L. Ratliff, and J. R. Wu, Proc. Natl. Acad. Sci. USA 85, 6622 (1988). doi: 10.1073/pnas.85.18.6622
    [3]
    V. L. Makarov, Y. Hirose, and J. P. Langmore, Cell 88, 657 (1997). doi: 10.1016/S0092-8674(00)81908-X
    [4]
    F. W. Smith and J. Feigon, Nature 356, 164 (1992). doi: 10.1038/356164a0
    [5]
    M. Gellert, M. N. Lipsett, and D. R. Davies, Proc. Natl. Acad. Sci. USA 48, 2013 (1962). doi: 10.1073/pnas.48.12.2013
    [6]
    Y. Wang and D. J. Patel, Structure 1, 263 (1993). doi: 10.1016/0969-2126(93)90015-9
    [7]
    J. X. Dai, M. Carver, C. Punchihewa, R. A. Jones, and D. Z. Yang, Nucleic Acids Res. 35, 4927 (2007). doi: 10.1093/nar/gkm522
    [8]
    J. X. Dai, C. Punchihewa, A. Ambrus, D. Chen, R. A. Jones, and D. Z. Yang, Nucleic Acids Res. 35, 2440 (2007). doi: 10.1093/nar/gkm009
    [9]
    G. N. Parkinson, M. P. H. Lee, and S. Neidle, Nature 417, 876 (2002). doi: 10.1038/nature755
    [10]
    M. I. Zvereva, D. M. Shcherbakova, and O. A. Dontsova, Biochemistry 75, 1563 (2010). http://www.springerlink.com/content/e1pw7547355v5142/
    [11]
    Y. Wang and D. J. Patel, Biochemistry 31, 8112 (1992). doi: 10.1021/bi00150a002
    [12]
    Y. Kato, T. Ohyama, H. Mita, and Y. Yamamoto, J. Am. Chem. Soc. 127, 9980 (2005). doi: 10.1021/ja050191b
    [13]
    M. Vorlíčková, J. Chladkova, I. Kejnovska, M. Fialova, and J. Kypr, Nucleic Acids Res. 33, 5851 (2005). doi: 10.1093/nar/gki898
    [14]
    H. Q. Yu, D. Miyoshi, and N. Sugimoto, J. Am. Chem. Soc. 128, 15461 (2006). doi: 10.1021/ja064536h
    [15]
    L. Petraccone, J. O. Trent, and J. B. Chaires, J. Am. Chem. Soc. 130, 16530 (2008). doi: 10.1021/ja8075567
    [16]
    J. Dai, M. Carver, and D. Yang, Biochimie 90, 1172 (2008). doi: 10.1016/j.biochi.2008.02.026
    [17]
    Y. Xu, T. Ishizuka, K. Kurabayashi, and M. Komiyama, Angew. Chem. Int. Ed. 48, 7833 (2009). doi: 10.1002/anie.v48:42
    [18]
    L. Petraccone, C. Spink, J. O. Trent, N. C. Garbett, C. S. Mekmaysy, C. Giancola, and J. B. Chaires, J. Am. Chem. Soc. 133, 20951 (2011). doi: 10.1021/ja209192a
    [19]
    Y. Sannohe, K. Sato, A. Matsugami, K. Shinohara, T. Mashimo, M. Katahira, and H. Sugiyama, Bioorg. Med. Chem. 17, 1870 (2009). doi: 10.1016/j.bmc.2009.01.051
    [20]
    H. Wang, G. J. Nora, H. Ghodke, and P. L. Opresko, J. Biol. Chem. 286, 7479 (2011). doi: 10.1074/jbc.M110.205641
    [21]
    R. F. Weaver and C. Weissmann, Nucleic Acids Res. 7, 1175 (1979). doi: 10.1093/nar/7.5.1175
    [22]
    T. M. Schmidt, E. F. Delong, and N. R. Pace, J. Bacteriol. 173, 4371 (1991). doi: 10.1128/jb.173.14.4371-4378.1991
    [23]
    J. F. Burd, R. M. Wartell, J. B. Dodgson, and R. D. Wells, J. Biol. Chem. 250, 5109 (1975). http://europepmc.org/abstract/MED/50320
    [24]
    H. Fujita, Foundations of Ultracentrifugal Analysis, New York: Wiley, 377 (1975). http://agris.fao.org/agris-search/search.do?recordID=US201300518356
    [25]
    J. E. Hearst, J. Mol. Biol. 4, 415 (1962). doi: 10.1016/S0022-2836(62)80024-2
    [26]
    G. Cohen and H. Eisenberg, Biopolymers 6, 1077 (1968). doi: 10.1002/(ISSN)1097-0282
    [27]
    L. M. Hellman, D. W. Rodgers, and M. G. Fried, Eur. Biophys. J. 39, 389 (2010). doi: 10.1007/s00249-009-0411-7
    [28]
    R. Buscaglia, M. C. Miller, W. L. Dean, R. D. Gray, A. N. Lane, J. O. Trent, and J. B. Chaires, Nucleic Acids Res. 41, 7934 (2013). doi: 10.1093/nar/gkt440
    [29]
    J. Li, J. J. Correia, L. Wang, J. O. Trent, and J. B. Chaires, Nucleic Acids Res. 33, 4649 (2005). doi: 10.1093/nar/gki782
    [30]
    J. B. Chaires, W. L. Dean, H. T. Le, and J. O. Trent, Method Enzymol. 562, 287 (2015). doi: 10.1016/bs.mie.2015.04.011
    [31]
    Y. T. Gao, S. Wu, and X. D. Ye, Soft Matter 12, 5959 (2016). doi: 10.1039/C6SM01010E
    [32]
    Y. T. Gao, T. L. Guang, and X. D. Ye, RSC Advances 7, 55098 (2017). doi: 10.1039/C7RA07758K
    [33]
    P. Schuck, Biophys. J. 78, 1606 (2000). doi: 10.1016/S0006-3495(00)76713-0
    [34]
    J. Lebowitz, M. S. Lewis, and P. Schuck, Protein Sci. 11, 2067 (2002). http://europepmc.org/abstract/med/12192063
    [35]
    J. L. Cole, J. W. Lary, T. P. Moody, and T. M. Laue, Methods Cell Biol. 84, 143 (2008). doi: 10.1016/S0091-679X(07)84006-4
    [36]
    J. L. Mergny, A. T. Phan, and L. Lacroix, Febs Lett. 435, 74 (1998). doi: 10.1016/S0014-5793(98)01043-6
    [37]
    D. Miyoshi, S. Matsumura, S. Nakano, and N. Sugimoto, J. Am. Chem. Soc. 126, 165 (2004). doi: 10.1021/ja036721q
    [38]
    X. H. Cang, J. Sponer, and T. E. Cheatham, Nucleic Acids Res. 39, 4499 (2011). doi: 10.1093/nar/gkr031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (1121) PDF downloads(346) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return