Hui-fang Wang, Gong Chen, Xiao-guang Li, Zhen-chao Dong. Role of Nanocavity Plasmons in Tunneling Electron Induced Light Emission on and near a Molecule[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 263-268. doi: 10.1063/1674-0068/31/cjcp1802024
Citation: Hui-fang Wang, Gong Chen, Xiao-guang Li, Zhen-chao Dong. Role of Nanocavity Plasmons in Tunneling Electron Induced Light Emission on and near a Molecule[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 263-268. doi: 10.1063/1674-0068/31/cjcp1802024

Role of Nanocavity Plasmons in Tunneling Electron Induced Light Emission on and near a Molecule

doi: 10.1063/1674-0068/31/cjcp1802024
Funds:  This work was supported by the National Natural Science Foundation of China, the National Basic Research Program of China, Chinese Academy of Sciences, Anhui Initiative in Quantum Information Technologies, and Basic Research Program of Shenzhen (JCYJ20150401145529035).
  • Received Date: 2018-02-13
  • Rev Recd Date: 2018-03-05
  • By using a microscopic quantum model, we study theoretically different roles of nanocavity plasmons in scanning tunneling microscope (STM) induced light emission upon selective initial excitation of molecules or plasmons. The time evolution and spectroscopic properties of the emission from the coupled plasmon-molecule system in each case are studied using time-dependent quantum mater equations. When the STM tip is placed on the molecule to ensure direct carrier injection induced molecular excitation, the major role of the plasmons is to enhance the molecular emission via increasing its radiative decay rate, resulting in sharp molecule-specific emission peaks. On the other hand, when the STM tip is located in close proximity to the edge of the molecule but without direct carrier injection into the molecule, the role of the plasmon-molecule coupling is to cause destructive interferences between the two quantum objects, leading to the occurrence of Fano dips around the energy of the molecular exciton in the plasmonic emission spectra.
  • 加载中
  • [1] X. H. Qiu, G. V. Nazin, and W. Ho, Science 299, 542(2003).
    [2] Y. Zhang, Y. Luo, Y. Zhang, Y. J. Yu, Y. M. Kuang, L. Zhang, Q. S. Meng, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, Nature 531, 623(2016).
    [3] K. Kuhnke, C. Grosse, P. Merino, and K. Kern, Chem. Rev. 117, 5174(2017).
    [4] Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, Nature Photon. 4, 50(2009).
    [5] G. Tian, J. C. Liu, and Y. Luo, Phys. Rev. Lett. 106, 177401(2011).
    [6] Y. Zhang, Y. Zelinskyy, and V. May, Phys. Rev. B 88, 155426(2013).
    [7] G. Chen, X. G. Li, Z. Y. Zhang, and Z. C. Dong, Nanoscale 7, 2442(2015).
    [8] G. Chen, X. G. Li, and Z. C. Dong, Chin. J. Chem. Phys. 28, 552(2015).
    [9] M. C. Chong, L. Sosa-Vargas, H. Bulou, A. Boeglin, F. Scheurer, F. Mathevet, and G. Schull, Nano Lett. 16, 6480(2016).
    [10] Y. M. Kuang, Y. J. Yu, Y. Luo, J. Z. Zhu, Y. Liao, Y. Zhang, and Z. C. Dong, Chin. J. Chem. Phys. 29, 157(2016).
    [11] Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, Phys. Rev. Lett. 92, 086801(2004).
    [12] M. C. Chong, G. Reecht, H. Bulou, A. Boeglin, F. Scheurer, F. Mathevet, and G. Schull, Phys. Rev. Lett. 116, 036802(2016).
    [13] Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, Nat. Commun. 8, 15225(2017).
    [14] H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, and Y. Kim, Phys. Rev. Lett. 119, 013901(2017).
    [15] J. Johansson, P. Nation, and F. Nori, Comput. Phys. Commun. 183, 1760(2012).
    [16] J. R. Lakowicz, Anal. Biochem. 337, 171(2005).
    [17] M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge, England:Cambridge University Press, (1997).
    [18] B. N. Persson and A. Baratoff, Phys. Rev. Lett. 68, 3224(1992).
    [19] K. Aslan, J. R. Lakowicz, and C. D. Geddes, Curr. Opin. Chem. Biol. 9, 538(2005).
    [20] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257(2010).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(651) PDF downloads(388) Cited by()

Proportional views
Related

Role of Nanocavity Plasmons in Tunneling Electron Induced Light Emission on and near a Molecule

doi: 10.1063/1674-0068/31/cjcp1802024
Funds:  This work was supported by the National Natural Science Foundation of China, the National Basic Research Program of China, Chinese Academy of Sciences, Anhui Initiative in Quantum Information Technologies, and Basic Research Program of Shenzhen (JCYJ20150401145529035).

Abstract: By using a microscopic quantum model, we study theoretically different roles of nanocavity plasmons in scanning tunneling microscope (STM) induced light emission upon selective initial excitation of molecules or plasmons. The time evolution and spectroscopic properties of the emission from the coupled plasmon-molecule system in each case are studied using time-dependent quantum mater equations. When the STM tip is placed on the molecule to ensure direct carrier injection induced molecular excitation, the major role of the plasmons is to enhance the molecular emission via increasing its radiative decay rate, resulting in sharp molecule-specific emission peaks. On the other hand, when the STM tip is located in close proximity to the edge of the molecule but without direct carrier injection into the molecule, the role of the plasmon-molecule coupling is to cause destructive interferences between the two quantum objects, leading to the occurrence of Fano dips around the energy of the molecular exciton in the plasmonic emission spectra.

Hui-fang Wang, Gong Chen, Xiao-guang Li, Zhen-chao Dong. Role of Nanocavity Plasmons in Tunneling Electron Induced Light Emission on and near a Molecule[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 263-268. doi: 10.1063/1674-0068/31/cjcp1802024
Citation: Hui-fang Wang, Gong Chen, Xiao-guang Li, Zhen-chao Dong. Role of Nanocavity Plasmons in Tunneling Electron Induced Light Emission on and near a Molecule[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 263-268. doi: 10.1063/1674-0068/31/cjcp1802024
Reference (20)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return