Heng-li Chen, Hong-yan Lu, Yu-min Qi, Peng Jin. Electronic Structure and Optical Properties of K2Ti6O13 Doped with Transition Metal Fe or Ag[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 318-324. doi: 10.1063/1674-0068/31/cjcp1712248
Citation: Heng-li Chen, Hong-yan Lu, Yu-min Qi, Peng Jin. Electronic Structure and Optical Properties of K2Ti6O13 Doped with Transition Metal Fe or Ag[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 318-324. doi: 10.1063/1674-0068/31/cjcp1712248

Electronic Structure and Optical Properties of K2Ti6O13 Doped with Transition Metal Fe or Ag

doi: 10.1063/1674-0068/31/cjcp1712248
  • Received Date: 2017-12-27
  • Rev Recd Date: 2018-05-18
  • Based on the experimental study of the optical properties of K2Ti6O13 doped with Fe or Ag, their electronic structures and optical properties are studied by the first-principles method based on the density functional theory (DFT). The calculated optical properties are consistent with the experiment results. K2Ti6O13 doped with substitutional Fe or Ag has isolated impurity bands mainly stemming from the hybridization by the Fe 3d states or Ag 4d states with Ti 3d states and O 2p states and the band gap becomes narrower, the absorption edge of K2Ti6O13 thus has a clear red shift and the absorption of visible light can be realized after doping. For Fe-doped K2Ti6O13, the impurity bands are in the middle of the band gap, suggesting that they can be used as a bridge for valence band electrons transition to the conduction band. For Ag-doped K2Ti6O13, the impurity bands form a shallow acceptor above the valence band and can reduce the recombination rate of photoexcited carriers. The experimental and calculated results are significant for the development of K2Ti6O13 materials that have absorption under visible light.
  • 加载中
  • [1] A. Fujishima and K. Honda, Nature 238, 37(1972).
    [2] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 95, 69(1995).
    [3] M. D. Bhatt and J. S. Lee, J. Mater. Chem. 3, 10632(2015).
    [4] Z. Zhao and Q. Liu, J. Phys. D:Appl. Phys. 41, 025105(2007).
    [5] Z. Liu, J. Zhang, Y. Lv, X. Zhou, and S. Li, J. Alloys Compd. 700, 1(2017).
    [6] G. Yang, T. Xiao, J. Sloan, G. Li, and Z. Yan, Chem. Eur. J. 17, 1096(2011).
    [7] H. Fujii, K. Inata, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Sci. 36, 527(2001).
    [8] M. Anpo and M. Takeuchi, J. Catal. 216, 505(2003).
    [9] R. Abe, J. Photochem. Photobiol. C:Photochem. Rev. 11, 179(2010).
    [10] S. Ouyang, T. Hua, N. Umezawa, J. Cao, L. Peng, Y. Bi, Y. Zhang, and J. Ye, J. Am. Chem. Soc. 134, 1974(2012).
    [11] Y. Zhang, A. Thomas, M. Antonietti, and X. Wang, J.Am. Chem. Soc. 131, 50(2009).
    [12] K. Shankar, K. Chhay Tep, G. K. Mor, and C. A. Grimes, J. Phys. D:Appl. Phys. 39, 2361(2006).
    [13] H. R. Rajabi and M. Farsi, J. Mol. Catal. A:Chem. 399, 53(2015).
    [14] K. Yang, D. F. Li, W. Q. Huang, L. Xu, G. F. Huang, and S. Wen, Appl. Phys. A 123, 96(2017).
    [15] Y. Wang, R. Zhang, J. Li, L. Li, and S. Lin, Nanoscale Res. Lett. 9, 46(2014).
    [16] G. Shao, J. Phys. Chem. C 112, 18677(2008).
    [17] L. K. Zhang, B. Wu, M. Wang, L. Chen, G. X. Ye, T. Chen, H. L. Liu, C. R. Huang, and J. L. Li, Adv. Mater. Res. 399, 1789(2012).
    [18] C. D. Valentin, G. Pacchioni, H. Onishi, and A. Kudo, Chem. Phys. Lett. 469, 166(2009).
    [19] Y. F. Zhao, C. Li, S. Lu, L. J. Yan, Y. Y. Gong, L. Y. Niu, and X. J. Liu, Chem. Phys. Lett. 647, 36(2016).
    [20] H. K. Lee, J. P. Shim, M. J. Shim, S. W. Kim, and J. S. Lee, Mater. Chem. Phys. 45, 243(1996).
    [21] D. Kapusuz, Y. E. Kalay, J. Park, and A. Ozturk, J. Ceram. Process. Res. 16, 291(2015).
    [22] Y. Li, H. Yu, Y. Yang, F. Zheng, H. Ni, M. Zhang, and M. Guo, Ceram. Int. 42, 11294(2016).
    [23] J. Xie, X. Lu, Y. Zhu, C. Liu, N. Bao, and X. Feng, J. Mater. Sci. 38, 3641(2003).
    [24] M. A. Siddiqui, V. S. Chandel, M. Shariq, and A. Azam, J. Mater. Sci. Mater. Electron. 24, 4725(2013).
    [25] B. L. Wang, Q. Chen, R. H. Wang, and L. M. Peng, Chem. Phys. Lett. 376, 726(2003).
    [26] M. A. Siddiqui, V. S. Chandel, and A. Azam, Appl. Surf. Sci. 258, 7354(2012).
    [27] X. Meng, D. Wang, J. Liu, B. Lin, and Z. Fu, Solid State Commun. 137, 146(2006).
    [28] M. Pescatori and C. Quondamcarlo, Chem. Phys. Lett. 376, 726(2003).
    [29] H. Yoshida, M. Takeuchi, M. Sato, L. Zhang, T. Teshima, and M. G. Chaskar, Catal. Today 232, 158(2014).
    [30] G. H. Du, Q. Chen, P. D. Han, Y. Yu, and L. M. Peng, Phys. Rev. B 67, 106(2003).
    [31] J. Zhu, F. Chen, J. Zhang, H. Chen, and M. Anpo, J. Photochem. Photobiol., A:Chem. 180, 196(2006).
    [32] G. Impellizzeri, V. Scuderi, L. Romano, P. M. Sberna, E. Arcadipane, R. Sanz, M. Scuderi, G. Nicotra, M. Bayle, and R. Carles, J. Appl. Phys. 116, 37(2014).
    [33] L. Z. Qin, H. Liang, B. Liao, A. D. Liu, X. Y. Wu, and J. Sun, Nucl. Instrum. Methods Phys. Res. Sect. A 307, 385(2013).
    [34] J. Yu, Q. Xiang, and M. Zhou, J. Phys. Chem. B 90, 595(2009).
    [35] T. Murase, H. Irie, and K. Hashimoto, J. Phys. Chem. B 109, 13420(2005).
    [36] M. J. Nalbandian, M. Zhang, J. Sanchez, S. Kim, Y. H. Choa, D. M. Cwiertny, and N. V. Myung, J. Hazard. Mater. 299, 141(2015).
    [37] M. Guo and J. Du, Physica B:Condens. Matter 407, 1003(2012).
    [38] Z. Li, W. Shen, W. He, and X. Zu, J. Hazard. Mater. 155, 590(2008).
    [39] K. Zhang, X. Wang, X. Guo, T. He, and Y. Feng, J. Nanopart. Res. 16, 2246(2014).
    [40] M. R. Bayati, M. Aminzare, R. Molaei, and S. K. Sadrnezhaad, Mater. Lett. 65, 840(2011).
    [41] P. J. D. Lindan, J. Phys.:Condens. Matter 14, 2717(2002).
    [42] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188(1976).
    [43] R.W. Godby, M. Schlüter, and L. J. Sham, Phys. Rev. B 37, 10159(1988).
    [44] S. Andersson and A. D. Wadsley, Acta Cryst. 15, 194(1962).
    [45] M. Hua and Y. Li, C. Long, and L. Xia, Physica B:Condens. Matter 407, 2811(2012).
    [46] C. Stampfl and C. G. V. D. Walle, Phys. Rev. B:Condens. Matter 59, 5521(1999).
    [47] J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884(1983).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(573) PDF downloads(390) Cited by()

Proportional views
Related

Electronic Structure and Optical Properties of K2Ti6O13 Doped with Transition Metal Fe or Ag

doi: 10.1063/1674-0068/31/cjcp1712248

Abstract: Based on the experimental study of the optical properties of K2Ti6O13 doped with Fe or Ag, their electronic structures and optical properties are studied by the first-principles method based on the density functional theory (DFT). The calculated optical properties are consistent with the experiment results. K2Ti6O13 doped with substitutional Fe or Ag has isolated impurity bands mainly stemming from the hybridization by the Fe 3d states or Ag 4d states with Ti 3d states and O 2p states and the band gap becomes narrower, the absorption edge of K2Ti6O13 thus has a clear red shift and the absorption of visible light can be realized after doping. For Fe-doped K2Ti6O13, the impurity bands are in the middle of the band gap, suggesting that they can be used as a bridge for valence band electrons transition to the conduction band. For Ag-doped K2Ti6O13, the impurity bands form a shallow acceptor above the valence band and can reduce the recombination rate of photoexcited carriers. The experimental and calculated results are significant for the development of K2Ti6O13 materials that have absorption under visible light.

Heng-li Chen, Hong-yan Lu, Yu-min Qi, Peng Jin. Electronic Structure and Optical Properties of K2Ti6O13 Doped with Transition Metal Fe or Ag[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 318-324. doi: 10.1063/1674-0068/31/cjcp1712248
Citation: Heng-li Chen, Hong-yan Lu, Yu-min Qi, Peng Jin. Electronic Structure and Optical Properties of K2Ti6O13 Doped with Transition Metal Fe or Ag[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 318-324. doi: 10.1063/1674-0068/31/cjcp1712248
Reference (47)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return