Lei Zhu, Chun-ming Xiong, Xiao-fen Tang, Li-jun Wang, Kang Peng, Hai-yang Yang. A Double Network Hydrogel with High Mechanical Strength and Shape Memory Properties[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 350-358. doi: 10.1063/1674-0068/31/cjcp1710188
Citation: Lei Zhu, Chun-ming Xiong, Xiao-fen Tang, Li-jun Wang, Kang Peng, Hai-yang Yang. A Double Network Hydrogel with High Mechanical Strength and Shape Memory Properties[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 350-358. doi: 10.1063/1674-0068/31/cjcp1710188

A Double Network Hydrogel with High Mechanical Strength and Shape Memory Properties

doi: 10.1063/1674-0068/31/cjcp1710188
Funds:  This work was supported by the National Natural Science Foundation of China (No.51273189), the National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2016ZX05016), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2016ZX05046).
  • Received Date: 2017-10-09
  • Rev Recd Date: 2017-11-08
  • Double network (DN) hydrogels as one kind of tough gels have attracted extensive attention for their potential applications in biomedical and load-bearing fields. Herein, we import more functions like shape memory into the conventional tough DN hydrogel system. We synthesize the PEG-PDAC/P(AAm-co-AAc) DN hydrogels, of which the first network is a well-defined PEG (polyethylene glycol) network loaded with PDAC (poly(acryloyloxyethyltrimethyl ammonium chloride)) strands, while the second network is formed by copolymerizing AAm (acrylamide) with AAc (acrylic acid) and cross-linker MBAA (N,N'-methylenebisacrylamide). The PEG-PDAC/P(AAm-co-AAc) DN gels exhibits high mechanical strength. The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m3, respectively. Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network, the PEG-PDAC/P(AAm-coAAc) DN hydrogels use P(AAm-co-AAc), a weak polyelectrolyte, as the second network. The AAc units serve as the coordination points with Fe3+ ions and physically crosslink the second network, which realizes the shape memory property activated by the reducing ability of ascorbic acid. Our results indicate that the high mechanical strength and shape memory properties, probably the two most important characters related to the potential application of the hydrogels, can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly.
  • 加载中
  • [1] Y. M. Chen, M. Tanaka, J. P. Gong, K. Yasuda, S. Yamamoto, M. Shimomura, and Y. Osada, Biomaterials 28, 1752(2007).
    [2] Z. Wei, J. H. Yang, J. X. Zhou, F. Xu, M. Zrínyi, P. H. Dussault, Y. Osada, and Y. M. Chen, Chem. Soc. Rev. 43, 8114(2014).
    [3] Y. Qiu and K. Park, Adv. Drug. Deliver. Rev. 53, 321(2001).
    [4] I. Roy and M. N. Gupta, Chem. Biol. 10, 1161(2003).
    [5] W. J. Zheng, Z. Q. Liu, F. Xu, J. Gao, Y. M. Chen, J. P. Gong, and Y. Osada, Macromol. Chem. Phys. 216, 641(2015).
    [6] Y. F. Li, N. Khuu, A. Gevorkian, S. Sarjinsky, H. Therien-Aubin, Y. H. Wang, S. Cho, and E. Kumacheva, Angew. Chem. Int. Ed. Engl. 56, 6083(2017).
    [7] H. Thérien-Aubin, Y. H. Wang, K. Nothdurft, E. Prince, S. Cho, and E. Kumacheva, Biomacromolecules 17, 3244(2016).
    [8] Z. W. Li, W. Lu, T. Ngai, X. X. Le, J. Zheng, N. Zhao, Y. J. Huang, X. F. Wen, J. W. Zhang, and T. Chen, Polym. Chem. 7, 5343(2016).
    [9] M. R. Islam, A. Ahiabu, X. Li, and M. J. Serpe, Sensors 14, 8984(2014).
    [10] H. Xiao, W. Lu, X. X. Le, C. X. Ma, Z. W. Li, J. Zheng, J. W. Zhang, Y. J. Huang, and T. Chen, Chem. Commun. 52, 13292(2016).
    [11] C. Maldonado-Codina and N. Efron, Ophthal. Physl. Opt. 24, 551(2004).
    [12] Y. Okumura and K. Ito, Adv. Mater. 13, 485(2001).
    [13] T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki, N. Sasaki, M. Shibayama, and U. I. Chung, Macromolecules 41, 5379(2008).
    [14] K. Haraguchi and T. Takehisa, Adv. Mater. 14, 1120(2002).
    [15] J. P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, Adv. Mater. 15, 1155(2003).
    [16] T. Nakajima, H. Furukawa, Y. Tanaka, T. Kurokawa, Y. Osada, and J. P. Gong, Macromolecules 42, 2184(2009).
    [17] S. Ahmed, T. Nakajima, T. Kurokawa, M. Anamul Haque, and J. P. Gong, Polymer 55, 914(2014).
    [18] J. P. Gong, Soft Matter 6, 2583(2010).
    [19] T. Nakajima, H. Sato, Y. Zhao, S. Kawahara, T. Kurokawa, K. Sugahara, and J. P. Gong, Adv. Funct. Mater. 22, 4426(2012).
    [20] Y. Zhao, T. Nakajima, J. J. Yang, T. Kurokawa, J. Liu, J. S. Lu, S. J. Mizumoto, K. Sugahara, N. Kitamura, K. Yasuda, A. U. D. Daniels, and J. P. Gong, Adv. Mater. 26, 436(2014).
    [21] Y. Tanaka, R. Kuwabara, Y. H. Na, T. Kurokawa, J. P. Gong, and Y. Osada, J. Phys. Chem. B 109, 11559(2005).
    [22] Q. M. Yu, Y. Tanaka, H. Furukawa, T. Kurokawa, and J. P. Gong, Macromolecules 42, 3852(2009).
    [23] A. Nakayama, A. Kakugo, J. P. Gong, Y. Osada, M. Takai, T. Erata, and S. Kawano, Adv. Funct. Mater. 14, 1124(2004).
    [24] T. C. Suekama, J. Hu, T. Kurokawa, J. P. Gong, and S. H. Gehrke, ACS Macro. Lett. 2, 137(2013).
    [25] L. H. Weng, A. Gouldstone, Y. H. Wu, and W. L. Chen, Biomaterials 29, 2153(2008).
    [26] Z. Tao, K. Peng, Y. J. Fan, Y. F. Liu, and H. Y. Yang, Polym. Chem. 7, 1405(2016).
    [27] F. Peng, G. Z. Li, X. X. Liu, S. Z. Wu, and Z. Tong, J. Am. Chem. Soc. 130, 16166(2008).
    [28] Y. J. Fan, W. F. Zhou, A. Yasin, H. Z. Li, and H. Y. Yang, Soft Matter 11, 4218(2015).
    [29] R. M. Fuoss, Discuss. Faraday. Soc. 11, 125(1951).
    [30] B. D. Fairbanks, M. P. Schwartz, A. E. Halevi, C. R. Nuttelman, C. N. Bowman, and K. S. Anseth, Adv. Mater. 21, 5005(2009).
    [31] J. Cui, M. A. Lackey, A. E. Madkour, E. M. Saffer, D. M. Griffin, S. R. Bhatia, A. J. Crosby, and G. N. Tew, Biomacromolecules 13, 584(2012).
    [32] A. Yasin, H. Z. Li, Z. Lu, S. U. Rehman, M. Siddiq, and H. Y. Yang, Soft Matter 10, 972(2014).
    [33] P. J. Flory, Principles of Polymer Chemistry, Ithaca, New York:Cornell University Press, (1953).
    [34] T. Tanaka, Phys. Rev. Lett. 40, 820(1978).
    [35] T. Matsuda, T. Nakajima, Y. Fukuda, W. Hong, T. Sakai, T. Kurokawa, U. I. Chung, and J. P. Gong, Macromolecules 49, 1865(2016).
    [36] Y. H. Na, Y. Tanaka, Y. Kawauchi, H. Furukawa, T. Sumiyoshi, J. P. Gong, and Y. Osada, Macromolecules 39, 4641(2006).
    [37] H. R. Brown, Macromolecules 40, 3815(2007).
    [38] Y. Tanaka, EPL (Eur. Lett.) 78, 56005(2007).
    [39] S. M. Liang, Z. L. Wu, J. Hu, T. Kurokawa, Q. M. Yu, and J. P. Gong, Macromolecules 44, 3016(2011).
    [40] T. Nakajima, T. Kurokawa, S. Ahmed, W. I. Wu, and J. P. Gong, Soft Matter 9, 1955(2013).
    [41] F. Rived, M. Rosés, and E. Bosch, Anal. Chim. Acta 374, 309(1998).
    [42] S. Y. Zheng, H. Y. Ding, J. Qian, J. Yin, Z. L. Wu, Y. H. Song, and Q. Zheng, Macromolecules 49, 9637(2016).
    [43] P. Lin, S. H. Ma, X. L. Wang, and F. Zhou, Adv. Mater. 27, 2054(2015).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1549) PDF downloads(608) Cited by()

Proportional views
Related

A Double Network Hydrogel with High Mechanical Strength and Shape Memory Properties

doi: 10.1063/1674-0068/31/cjcp1710188
Funds:  This work was supported by the National Natural Science Foundation of China (No.51273189), the National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2016ZX05016), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2016ZX05046).

Abstract: Double network (DN) hydrogels as one kind of tough gels have attracted extensive attention for their potential applications in biomedical and load-bearing fields. Herein, we import more functions like shape memory into the conventional tough DN hydrogel system. We synthesize the PEG-PDAC/P(AAm-co-AAc) DN hydrogels, of which the first network is a well-defined PEG (polyethylene glycol) network loaded with PDAC (poly(acryloyloxyethyltrimethyl ammonium chloride)) strands, while the second network is formed by copolymerizing AAm (acrylamide) with AAc (acrylic acid) and cross-linker MBAA (N,N'-methylenebisacrylamide). The PEG-PDAC/P(AAm-co-AAc) DN gels exhibits high mechanical strength. The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m3, respectively. Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network, the PEG-PDAC/P(AAm-coAAc) DN hydrogels use P(AAm-co-AAc), a weak polyelectrolyte, as the second network. The AAc units serve as the coordination points with Fe3+ ions and physically crosslink the second network, which realizes the shape memory property activated by the reducing ability of ascorbic acid. Our results indicate that the high mechanical strength and shape memory properties, probably the two most important characters related to the potential application of the hydrogels, can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly.

Lei Zhu, Chun-ming Xiong, Xiao-fen Tang, Li-jun Wang, Kang Peng, Hai-yang Yang. A Double Network Hydrogel with High Mechanical Strength and Shape Memory Properties[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 350-358. doi: 10.1063/1674-0068/31/cjcp1710188
Citation: Lei Zhu, Chun-ming Xiong, Xiao-fen Tang, Li-jun Wang, Kang Peng, Hai-yang Yang. A Double Network Hydrogel with High Mechanical Strength and Shape Memory Properties[J]. Chinese Journal of Chemical Physics , 2018, 31(3): 350-358. doi: 10.1063/1674-0068/31/cjcp1710188
Reference (43)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return